Issue
Korean Chemical Engineering Research,
Vol.49, No.3, 325-329, 2011
초음파 합성법을 이용한 이리듐계 인광 물질 합성과 합성된 인광 물질의 전계 발광 특성 분석
Study on Electroluminescence of the Phosphorescent Iridium(III) Complex Prepared by Ultrasonic Wave
본 연구를 통해 최근 개발된 근자외선영역대에서 발광하는 이리듐 착물인 Ir(pmb)3 (Iridium(III) Tris(1-phenyl-3-methylbenzimidazolin-2-ylidene-C,C2' ))의 합성 과정상에서 기존의 합성법과 동일한 발광 특성을 가지면서 더 효율적인 합성 방법을 제안하였다. 합성 과정에서 초음파가 투입되면서 용매에 녹지 않는 반응물의 파쇄 및 혼합을 돕고, 촉매의 활성을 향상시켜 이온 및 라디컬을 형성시키는 방법으로 최대 42.5% 합성 수율을 얻어 내었으며 이는 기존 방법 대비 약 4배 이상 향상된 결과이다. 이러한 초음파 합성법으로 합성된 Ir(pmb)3은 이성질체 별로 405 nm(면이성질체) 412 nm(자오선이성질체)의 발광 피크를 보였으며 이중 좀더 효율이 높은 자오선이성질체를 사용하여 전계 발광 소자를 제작하였다. 밴드갭이 큰 Ir(pmb)3에 적합한 호스트 물질을 UGH2, CBP, mCP 세가지 선정하여 전계발광소자를 제 작하였으며, 그 중 mCP를 호스트 물질로 사용한 소자의 경우가 호스트물질과 인광물질사이의 에너지전달이 가장 효율적으로 일어나 가장 높은 휘도와 효율을 보였다.
Ir(pmb)3 (Iridium(III)Tri(1-phenyl-3-methylbenzimidazolin-2-ylidene-C,C2' ) was synthesized to develop a deep blue-emitting Ir(III) complex. We suggested the ultrasonic reactor to enhance the poor reaction yield of Ir(pmb)3. The ultrasonic wave enhanced the reaction yield of Ir(pmb)3 because the ultrasound helped non-soluble reactants disperse efficiently and produced free radial during the reaction. The maximum yield of Ir(pmb)3 was 42.5%, which was 4 times higher than conventional method. Organic light emitting devices were fabricated with the synthesized mer-Ir(pmb)3 which emitted at 405 nm. A range of host materials with large bandgaps (UGH2, mCP and CBP) were tested for developing a deep blue emitting device. In case of the device with mCP as the host material, it emitted deep blue and performed quite well relative to the other host materials tested.
[References]
  1. Burrows PE, Gu G, Bulovic V, Shen Z, Forrest SR, Thompson ME, IEEE T. Electron Dev., “Achieving Full-color Organic Light-emitting Devices for Lightweight, Flat-panel Displays", 44, 1188, 1997
  2. Tamayo AB, Alleyne BD, Djurovich PI, Lamansky S, Tsyba I, Ho NN, Bau R, Thompson ME, J. Am. Chem. Soc., “Synthesis and Characterization of Facial and Meridional Tris-cyclometalated Iridium(III) Complexes", 125(24), 7377, 2003
  3. Baldo MA, Thompson ME, Forrest SR, Nature., “High-efficiency Fluorescent Organic Light-emitting Devices Using a Phosphorescent Sensitizer", 403, 750, 2000
  4. Yu HJ, Park K, Kim SH, Mol. Cryst. Liquid Cryst., “Preparation of Blue-emitting Phosphorescent Iridium(III) Complex under Ultrasound Reaction", 499, 26, 2009
  5. Sajoto T, Djurovich PI, Tamayo A, Yousufuddin M, Bau R, Thompson ME, Holmes RJ, Forrest SR, Inorg. Chem., “Blue and Near-UV Phosphorescence from Iridium Complexes with Cyclometalated Pyrazolyl or N-Heterocyclic Carbene Ligands", 44(22), 7992, 2005
  6. Seo JH, Kim IJ, Kim YK. Kim YS, Thin Solid Films., “Single Dopant White Electrophosphorescent Light Emitting Diodes Using Heteroleptic Tris-cyclometalated Iridium(III) Complexes", 516, 3614, 2008
  7. Yook KS, Jeon SO, Joo CW, Lee JY, Org. Electron., “High Efficiency Deep Blue Phosphorescent Organic Light-emitting Diodes", 10, 170, 2009
  8. Yook KS, Lee JY, J. Ind. Eng. Chem., “Recombination Zone Study of Phosphorescent Organic Light-emitting Diodes with Triplet Mixed Host Emitting Structure", 16(2), 181, 2010
  9. Tsuboi T, Aljaroudi N, J. Lumines., “Relaxation Processes in the Triplet State T1 of Organic Ir-compound Btp2Ir(acac) Doped in PC and CBP Fluorescent Materials", 119, 127, 2006
  10. Holmes RJ, Forrest SR, Sajoto T, Tamayo A, Djurovich PI, Thompson ME, Brooks J, Tung YJ, D'Andrade BW, Weaver MS, Kwong RC, Brown JJ, Appl. Phys. Lett., “Saturated Deep Blue Organic Electrophosphorescence Using a Fluorine-free Emitter", 87, 243503, 2005
  11. Ohsaka T, Isaka M, Hirano K, Ohishi T, Ultrason. Sonochem., “Effect of Ultrasound Sonication on Electroplating of Iridium”, 15, 283, 2008
  12. Wang HMJ, Lin IJB, Organometallics., “Facile Synthesis of Silver(I)-Carbene Complexes. Useful Carbene Transfer Agents", 17, 972, 1998