Issue
Korean Chemical Engineering Research,
Vol.49, No.3, 271-276, 2011
대면적 대기압 플라즈마-용액 시스템을 이용한 폴리프로필렌 표면 처리
Surface Treatment of Polypropylene using a Large Area Atmospheric Pressure Plasma-solution System
대면적 대기압 플라즈마 반응 장비를 플라즈마-용액 시스템에 적용하여 액상 내부에 잠입된 폴리프로필렌(PP) 필름의 표면손상 없이 관능기 도입 가능성을 탐색하였다. 액상으로 1-butyl-3- methylimidazolium tetrafluoroborate: [BMIM]+[BF4]^(-) 이온성 액체 수용액을 사용한 경우, 안정적으로 플라즈마를 발생시킬 수 있었다. PP 필름의 플라즈마 처리 결과, PP 표면에 다양한 산소 함유 관능기들이 도입되었음을 확인할 수 있었다. 플라즈마 처리 후 PP의 표면 자유에너지는 처리시간, 전압의 증가에 따라서 증가하며, 1.5M 이온성 액체 수용액 농도에서 가장 큰 값을 나타내었다. ATR-FTIR 분석 결과, 다양한 카르보닐 기(1,726 cm^(-1), 1,643 cm^(-1))와 하이드록시 기(3,100~3,500 cm^(-1))의 흡광도가 증가하였고, XPS 분석은 ATR-FTIR 분석 결과를 뒷받침하여 주었다.
We investigated the possibility of introducing functional groups without damaging surface polymeric chains through the treatment of a polypropylene(PP) film immersed in liquid phase using an atmospheric pressure plasma with large area. The ionic liquid of 1-butyl-3-methylimidazolium tetrafluoroborate: [BMIM]+[BF4]- was successfully applied for generating stable plasmas in the plasma-solution system. We successfully treated the film surface using the plasma-solution system and confirmed various oxygen-containing functional groups formed on the surface of PP film. The surface free energy of PP film was increased with increasing plasma treatment time and power. It also showed a maximum value at the PP sample treated in the ionic liquid solution of 1.5 M. ATR-FTIR analyses revealed the increase of various carbonyl groups(1,726 cm^(-1), 1,643 cm^(-1)) and OH groups(3,100~3,500 cm^(-1)) after plasma treatment of PP film, and XPS also supported the ATR-FTIR result.
[References]
  1. Myung SW, Yeom YH, Jang YM, Choi HS, Cho DC, J. Mate. Sci: Mater.Med., “Preparation of a Reticulated Polyurethane Foam Grafted with Poly(acrylic acid) through Atmospheric Pressure Plasma Treatment and its Lysozyme Immobilization”, 16, 745, 2005
  2. Kwon OJ, Tang S, Myung SW, Lu N, Choi HS, Surf. Coat. Technol., “Surface Characteristics of Polypropylene Film Treated by an Atmospheric Pressure Plasma", 192, 1, 2005
  3. Kwon OJ, Myung SW, Lee CS, Choi HS, J. Colloid Interface Sci., “Comparison of the Surface Characteristics of Polypropylene Films Treated by Ar and Mixed gas (Ar/O2) Atmospheric Pressure Plasma", 295(2), 409, 2006
  4. Zhao Y, Tang S, Myung SW, Lu N, Choi HS, Polymer Testing., “Effect of Washing on Surface Free Energy of Polystyrene Plate Treated by RF Atmospheric Pressure Plasma", 25, 327, 2006
  5. Tang S, Lu N, Wang JK, Ryu SK, Choi HS, J. Phys. Chem. C., “Novel Effects of Surface Modification on Activated Carbon Fibers Using a Low Pressure Plasma Treatment", 111, 1820, 2007
  6. Tang S, Kwon OJ, Lu N, Choi HS, Korean J. Chem. Eng., “Surface Free Energy Changes of Stainless Steel after One Atmospheric Pressure Plasma Treatment", 21(6), 1218, 2004
  7. Tang S, Kwon OJ, Lu N, Choi HS, Surf. Coat. Technol., “Surface Characteristics of AISI 304L Stainless Steel After an Atmospheric Pressure Plasma Treatment", 195, 298, 2005
  8. Tang S, Lu N, Myung SW, Choi HS, Surf. Coat. Technol., “Enhancement of Adhesion Strength between Two AISI 316 L Stainless Steel Plates through Atmospheric Pressure Plasma Treatment", 200, 5220, 2006
  9. Jung MH, Choi HS, Thin Solid Films, “Photoresist Etching Using Ar/O2 and He/O2 Atmospheric Pressure Plasma", 515(4), 2295, 2006
  10. Gubkin J, Ann. Physik., “Electrolytische Metallabscheidung an der freien Oberflache einer Salzlosung", 32, 114, 1887
  11. Lisitsyn IV, Nomiyama H, Katsuki S, Akiyama H, Rev. Sci. Instrum., “Streamer Discharge Reactor for Water Treatment by Pulsed Power", 70, 3457, 1999
  12. Hieda J, Saito N, Takai O, J. Vac. Sci. Technol. A, “Exotic Shapes of Gold Nanoparticles Synthesized Using Plasma in Aqueous Solution", 26(4), 854, 2008
  13. Ichiki T, Koidesawa T, Horiike Y, Plasma Sources Sci. Technol., “An Atmospheric-pressure Microplasma Jet Source for the Optical Emission Spectroscopic Analysis of Liquid Sample", 12, S16, 2003
  14. Titov VA, Rybkin VV, Shikova TG, Ageeva TA, Golubchikov OA, Choi HS, Surf. Coat. Technol., 199, 231, 2005
  15. Ishijima T, Hotta H, Sugai H, Sato M, Appl. Phys. Lett., “Multibubble Plasma Production and Solvent Decomposition in Water by Slotexcited Microwave Discharge", 91, 121501, 2007
  16. Ryzhkov VA, Physica B., “Carbon Nanotube Production by a Cracking of Liquid Hydrocarbons", 323, 324, 2002
  17. Kazuhiko H, Takeru O, Toshiro K, Rikizo H, J. Plasma Fusion Res., “Development of a Plasma Source Using Atmospheric-Pressure Glow Discharge in Contact with Solution", 81, 417, 2005
  18. Baba K, Okada T, Kaneko T, Hatakeyama R, Yoshiki H, Thin Solid Films, “Investigation of Gas-liquid Interface in Atmospheric-pressure Micro Plasma with Solution", 515(9), 4308, 2007
  19. Baba K, Kaneko T, Hatakeyama R, Appl. Phys. Lett., 90, 201501, 2007
  20. Kaneko T, Baba K, Hatakeyama R, Plasma Phys. Control. Fusion., “Gas-liquid Interfacial Plasmas: Basic Properties and Applications to Nanomaterial Synthesis", 51, 124011, 2009
  21. Kaneko T, Baba K, Harada T, Hatakeyama R, Plasma Process. Polym., “Novel Gas-Liquid Interfacial Plasmas for Synthesis of Metal Nanoparticles", 6, 713, 2009
  22. Choi HS, Rybkin VV, Titov VA, Shikova TG, Ageeva TA, Surf. Coat. Technol., “Comparative Actions of a Low Pressure Oxygen Plasma and an Atmospheric Pressure Glow Discharge on the Surface Modification of Polypropylene", 200, 4479, 2006
  23. Choi HS, Shikova TG, Titov VA, Rybkin VV, J. Colloid Interface Sci., “Surface Oxidation of Polyethylene Using an Atmospheric Pressure Glow Discharge with Liquid Electrolyte Cathode", 300(2), 640, 2006