Issue
Korean Chemical Engineering Research,
Vol.49, No.2, 230-237, 2011
인공 폐 보조장치 내에서의 유체 유동 모델링에 대한 연구
Study on the Fluid Dynamics Modeling in Artificial Lung Assist Device
본 연구에서는 혈관 내 인공 폐(intravenous lung assist device)를 개발하기 위하여 CFD를 사용하여 새로운 형태의 인공 폐 모형에 대한 유체의 흐름 특성을 모델링하였다. 모델링을 위하여 중공사(hollow fiber)는 무시하였으며 vertical type과 tangential type이 모델로 사용되었다. 유체의 흐름 특성을 예측하기 유체의 입출구로 1개로 하였을 때와 2개로 하였을 때 그리고 입출구를 관의 중심부(vertical)와 관 벽의 접선방향(tangential)에 위치하였을 때의 흐름 특성을 파악하였다. 실험 결과, tangential type과 같이 원통의 접선 방향으로 유체의 입구와 출구를 설정할 경우 vertical type에서 나타나는 흐름이 없는 영역(정체층)을 제거할 수 있었다. 또한 tangential type은 와류형태의 흐름이 지배적이며 한쪽으로 편중된 흐름이 아닌 복잡한 형태의 흐름이 발생하는 것으로 나타났다. 또한 유체의 입출구가 2개일 때 유체가 편중된 흐름이 발생하지 않고 관 전체에 복잡한 형태로 흐름이 발생하는 것으로 나타났다. 실험 결과를 통하여 우리는 유체가 유입되는 입구와 출구가 tangential type이며 각각 2개일 때 유체의 흐름이 복잡하며 정체층이 발생하지 않는 흐름이 발생한다는 것을 확인할 수 있었다.
In this study, the characteristic of fluid flow in the new type lung assist devices has been established using computational fluid dynamics(CFD). For the modeling, the hollow fiber was ignored, and vertical types and tangential types were used for the model. Which was to analyze the flow characteristics of the fluid flow model when there exists 1 and 2 input/output ports, and when the input/output ports is located at the center of the cylinder and at the tangential direction with the cylinder wall. The modeling results showed that it was possible to eliminate no-flow region(stagnant layer) as shown in the vertical type when an inlet and an outlet were installed on the tangential direction of the cylinder as shown in the tangential type. Also, in the tangential type, vortex-type flow appeared as dominant, and it showed a complicated flow not deviated to one side. When the number of input/output was two, there was no deviated flow, and complicated flows were generated all across the tube. From the test result, it was found that input/output of flow was tangential type and complicated flows with no stagnant layer would be generated when there are two inputs/outputs, respectively.
[References]
  1. Kim GB, Hong CU, Kwon TK, J. Artifi. Orgnas., “Design of the Intravenous Oxygenator,”, 9, 34, 2006
  2. Kim GB, Hong CU, Kwon TK, Jpn. J. Appl. Phys., “Vibration Characterictics of PZT Actuator by Fluid Flow in Intravascular Oxygenator.", 45(4B), 3811, 2006
  3. Kim GB, Kwon TK, Hong CU, Kim SJ, Kim MH, ASAIO J., “Study on the Design of the Intravenous Oxygenator,”, 52(2), 64A, 2006
  4. Hong CU, Kim JM, Kim MH, Kim SJ, Kang HS, Kim JS, Kim GB, IJPEM., “Gas Transfer and Hemolysis in Intravascular Lung Assist Device Using PZT Actuator.", 10(1), 57, 2009
  5. Kim GB, Hong CU, Kim SJ, Kim JS, Kim MH, Kang HS, J. Mem. Sci., “Development of a Hollow Fiber Membrane Module for Use in An Implantable Artificial Lung”, 326, 1300, 2009
  6. Funakubo A, Higami T, Sakuma I, Fukui Y, Kawamura T, Sato K, Sueoka A, Nokse Y, ASAlO J., “Development of a Membrane Oxygenator for ECMO Using a Novel Fine Silicone Hollow Fiber,”, 42, M837, 1996
  7. Lynch WR, Haft JW, Montoya JP, Saleh E, Brant DO, Lannettoni M, Bartlett RH, Hirschl RB, ASAIO J., “Partial Respiratory Support with An Artificial Lung Perfused by the Right Ventricle: Chronic Studies in An Active Animal Model.", 46, 202, 2000
  8. Lick SD, Zwiscenberger JB, Alpard SK, Witt SA, Deyo DM, Merz S, ASAlO J., “Development of An Ambulatory Artificial Lung in An Ovine Survival Model.", 47, 486, 2001
  9. Conrad SA, Artifi. Organs., “Major Findings from the Clinical Trials of the Intravascular Oxygenator.", 18, 846, 1994
  10. Kim GB, Kwon TK, Lee SC, Kim SJ, Cheong IS, Oh IH, Kim KJ, Byun YS, Jheong GR, Korean Chem. Eng. Res., “Characteristics of Oxygen Transfer in Intravascular Lung Assist Device by Vibrating", 42(2), 151, 2004
  11. Kim GB, Kim SJ, Hong CU, Kwon TK, Kim NG, Korean J. Chem. Eng., “Enhancement of Oxygen Transfer in Hollow Fiber Membrane by the Vibration Method,”, 22(4), 521, 2005
  12. Funakubo A, Taga IT, McGillicuddy JW, Kukui Y, Hirschl RB, Bartlett RH, ASAIO J., “Flow Vectorial Analysis in Am Artificial Implantable Lung.", 49, 383, 2003