Issue
Korean Chemical Engineering Research,
Vol.49, No.2, 224-229, 2011
자가면역글로불린 G 측정을 위한 표면탄성파 바이오센서에 대한 연구
Study of the Surface Acoustic Wave Biosensors for Detection of the Immunoglobulin G
본 연구에서 탄성표면파(SH-SAW) 디바이스의 지연선에 코팅된 골드 위에서 면역 글로불린 G(IgG) 검출을 위한 SH-SAW 센서를 개발하고자 하였다. 실험결과, 금표면 위에 anti-MIgG 혼합물을 일관되게 고정시킬 수 있었다. G-anti MIgG 혼합물과 blocking buffer를 이용한 골드 표면 위에 고정화 하였을 때 주파수 변위를 측정한 결과, G-anti MIgG는 초기 주파수에서 75.1 kHz 주파수 변위를 보였으며 blocking buffer는 215.7 kHz의 주파수 변위를 보였다. 100 MHz 센서에서 MIgG의 농도가 25, 50, 75, 100 μg일 때 46.3, 127.45, 161.21, 262.39 kHz 주파수 변위를 보였다.
In this study, we have developed shear horizontal(SH) surface acoustic wave(SAW) sensors for the detection of immunoglobulin G(IgG) on the gold coated delay line of SH-SAW devices. As the result of the experiment, we could uniformly immobilize anti-MIgG(mouse IgG) conjugate on the surface of gold. When displaying results of immobilization on the surface of gold using G-anti MIgG conjugate and blocking buffer in frequency shift, G-anti MIgG conjugate showed frequency shift of 75.1 kHz in the initial frequency, and blocking buffer showed frequency shift of 215.7kHz. When various concentrations of MIgG was added in 100MHz type sensor, the sensor showed 46.3, 127.45, 161.21 and 262.39 kHz frequency shift at 25, 50, 75 and 100 μg MIgG concentration, respectively.
[References]
  1. Ballantine DS, White RM, Martin SJ, Ricco AJ, Zellers ET, Frye GC, Wohltjen H, “Acoustic Wave Sensors: Theory, Design, and Physico-chemical Application,” Academic Press Inc., San Diego, 1997
  2. Gizelli E, Goddard NJ, Stevenson AC, Lowe CR, Sens. Actuators B, Chem., “A Love Plate Biosensor Utilising a Polymer Layer", 6, 131, 1992
  3. Bender F, Meimeth F, Dahint R, Grunze M, Josse F, Sens. Actuators B, Chem., “Mechanisms of Interaction in Acoustic Plate Mode Immunosensors,”, 40, 105, 1997
  4. Welsch W, Klein C, Von Schickfus M, Hunklinger S, Anal. Chem., “Development of a Surface Acoustic Wave Immunosensor,”, 68, 2000, 1996
  5. Lee Y, Kim H, Roh Y, Cho H, Baik S, Sens. Actuators., “Development of a SAW Gas Sensor for Monitoring SO2 Gas", A64, 173, 1998
  6. Hur Y, Han J, Seon J, Pak YE, Roh Y, Sens. Actuators., “Development of a SAW Sensor for the Detection of DNA Hybridization,”, A120, 462, 2005
  7. Galipeau DW, Story PR, Vetelino KA, Mileham RD, Smart Mater. Struct., “Surface Acoustic Wave Microsensors and Applications", 6, 658, 1997
  8. Josse F, Bender F, Cernosek RW, Anal. Chem., “Guided Shear Horizontal Surface Acoustic Wave Sensors for Chemical and Biochemical Detection in Liquids.", 73, 5937, 2001
  9. Park Y, J. Korean Inst. Electron. Eng., “Biosensor and Lab-on-a-chip”, 31(1), 58, 2004
  10. Kim GB, Chong WS, Kwon TK, Hohkawa K., Hong, CU, Kim NG, JJAP., “Basic Study to Develop Biosensors Using Surface Acoustic Wave,”, 44(4B), 2868, 2005
  11. Japan Society for the Promotion of Science, Acoustic wave device Technology, Ohmsha, 2004
  12. Thompson M, Stone DC, Surface-Launched Acoustic Wave Sensors, John Wiley & Sons, New York, 1997
  13. Chong WS, Hong CU, Kim GB, Korean Chem. Eng. Res., “Surface Acoustic Wave Characteristics of Piezoelectric Materials and Protein Immobilization,”, 44(2), 166, 2006
  14. Tizard IR, Veterinary Immunology: An Introduction, 7th ed., Elsevier, Philadelphia, 2004
  15. Robbins SL, Robbins' Pathologic basis of disease, Saunders, Philadelphia, 1989
  16. Das J, Jo K, Lee JW, Yang H, Anal. Chem., “Electrochemical immunosenosr using p-aminopheol redex cycling by hydrazine combined with low background current.", 79, 2790, 2007