Issue
Korean Chemical Engineering Research,
Vol.49, No.2, 168-174, 2011
란탄 기반 페롭스카이트 촉매를 이용한 악취 유발 물질의 저온 산화 반응
Low-temperature Oxidation of Odor Compounds over La-based Perovskite Catalyst
La을 기반으로 하는 다양한 페롭스카이트 촉매를 페치니(Pechini)법에 따라 제조하고, 이 촉매를 음식물 처리 과정에서 발생하는 악취 성분의 저온 산화 반응에 적용하여 효과적인 탈취가 이루어지도록 하였다. 배출 가스의 정량 및 정성 분석을 통하여 음식물 처리 시간에 따른 주요 악취 성분의 양을 조사하였다. 그리고 주요 악취 성분들로 구성된 표준 악취 시료는 산화 반응기의 반응물로 도입하였다. 먼저, 다양한 전이 금속 M이 치환된 La 기반 페롭스카이트 촉매(LaMO3: M=Cr, Mn, Fe, Co 및 Ni)를 제조하고 전이 금속 M의 영향을 알아보기 위해 악취 성분의 산화 반응에 적용한 결과, 테스트한 촉매 중에서 LaNiO3 촉매가 가장 우수한 촉매 활성을 보였다. 또한 촉매 활성을 증진시키기 위하여 Pt가 치환된 페롭스카이트 촉매(LaNi1-xPtxO3: x=0, 0.03, 0.1 및 0.3)를 제조하였고, 이로부터 LaNi0.9Pt0.1O3 촉매 가 가장 효율적인 촉매인 것을 알 수 있었다. 끝으로 저온 산화 반응에서의 페롭스카이트 촉매의 활성을 극대화하기 위하여 담지된 페롭스카이트 촉매(XLaNi0.9Pt0.1O3/Al2O3: X=페롭스카이트 함량(wt%), 0, 10, 20, 30, 40, 50 및 100)를 적용하였다. XLaNi0.9Pt0.1O3/Al2O3 촉매의 활성은 페롭스카이트 함량에 따라 화산형(Volcano-shaped) 곡선을 나타내었으며, 이 때 20LaNi0.9Pt0.1O3/Al2O3 촉매가 180 ℃의 반응 온도에서 88.7%의 가장 높은 전환율을 보였다.
Various La-based perovskite catalysts were prepared by a Pechini method, and they were applied to the low-temperature oxidation of odor compounds exhausted from waste food treatment process for effective deodorization. Quantitative and qualitative analyses of exhausted gas were conducted to measure the amount of major odor compounds with respect to operation time. A standard odor sample composed of major odor compounds was then prepared for use as a feed for oxidation reaction system. Various transition metal(M)-substituted La-based perovskite catalysts (LaMO3:M=Cr, Mn, Fe, Co, and Ni) were prepared and applied to the oxidation of odor compounds in order to investigate the effect of transition metal M. Among the catalysts tested, LaNiO3 catalyst showed the best catalytic performance. Pt-substituted perovskite catalysts (LaNi1-xPtxO3: x=0, 0.03, 0.1, and 0.3) were then prepared for enhancing the catalytic performance. It was found that LaNi0.9Pt0.1O3 catalyst served as the most efficient catalyst. Supported perovskite catalysts (XLaNi0.9Pt0.1O3/Al2O3: X=perovskite content(wt%), 0, 10, 20, 30, 40, 50, and 100) were finally applied for the purpose of maximizing the catalytic performance of perovskite catalyst in the low-temperature oxidation reaction. Catalytic performance of XLaNi0.9Pt0.1O3/Al2O3 catalysts showed a volcano-shaped curve with respect to perovskite content. Among the catalysts tested, 20LaNi0.9Pt0.1O3/Al2O3 catalyst exhibited the highest conversion of odor compounds of 88.7% at 180 ℃.
[References]
  1. Lee CY, Chung JS, Shin EW, Korean Chem. Eng. Res., “Sorption Behavior of Acetic Acid onto Activated Carbons,", 46(6), 1130, 2008
  2. Das D, Gaur V, Verma N, Carbon., “Removal of Volatile Organic Compound by Activated Carbon Fiber.", 42(14), 2949, 2004
  3. Barbero BP, Gamboa JA, Cadus LE, Appl. Catal. B: Environ., “Synthesis and Characterisation of La1-xCaxFeO3 Perovskite-type Oxide Catalysts for Total Oxidation of Volatile Organic Compounds,”, 65(1-2), 21, 2006
  4. Spinicci R, Tofanari A, Faticanti M, Pettiti I, Porta P, J. Mol. Catal. A-Chem., “Hexane Total Oxidation on LaMO3(M=Mn, Co, Fe) Perovskitetype Oxides,”, 176(1-2), 247, 2001
  5. Lojewska J, Kolodziej A, Kapica R, Knapik A, Tyczkowski J, Catal. Today., “In Search for Active Non-precious Metal Catalyst for VOC Combustion Evaluation of Plasma Deposited Co and Co/Cu Oxide Catalysts on Metallic Structured Carriers.", 1475, 594, 2009
  6. Pena MA, Fierro JLG, Chem. Rev., “Chemical Structures and Performance of Perovskite Oxides.", 101(7), 1981, 2001
  7. Levasseur B, Kaliaguine S, J. Solid State Chem., “Effect of the Rare Earth in the Perovskite-type Mixed Oxides AMnO3(A=Y, La, Pr, Sm, Dy) as Catalysts in Methanol Oxidation,”, 181, 2953, 2008
  8. Koponen MJ, Suvanto M, Pakkanen TA, Kallinen K, Kinnunen TJJ, Harkonen M, Solid State Sci., “Synthetic Studies of ABB’O3 (A=La, Pr, Nd; B=Fe, Mn; B’=Pd, Pt) Perovskites,”, 7, 7, 2005
  9. Ciambelli P, Cimino S, Lisi L, Faticanti M, Minelli G, Pettiti I, Porta P, Appl. Catal. B: Environ., “La, Ca and Fe Oxide Perovskites: Preparation, Characterization, and Catalytic Properties for Methane Combustion.", 33(3), 193, 2001
  10. Musialik-Piotrowska A, Syczewska K, Catal. Today, “Combustion of Volatile Organic Compounds in Two-component Mixtures over Monolithic Perovskite Catalysts,”, 59(3-4), 269, 2000
  11. Klvana D, Song KS, Kirchnerova J, Korean J. Chem. Eng., “Catalytic Performance of La0.66Sr0.34Co0.2Fe0.8O3 Perovskite in Propane Combustion: Effect of Preparation and Specific Surface Area.", 19(6), 932, 2002
  12. Tak YS, Lee GD, Lee WY, Lee HI, Korean Chem. Eng. Res., “Total Oxidation of Propylene over Perovskite-type Oxide Catalysts,”, 26(6), 641, 1988
  13. Ponce S, Pena MA, Fierro JLG, Appl. Catal. B: Environ., “Surface Properties and Catalytic Performance in Methane Combustion of Sr-substituted Lanthanum Manganites.", 24(3-4), 193, 2000
  14. Pechini MP, “Method of Preparing Lead and Alkaline Earth Titanates and Niobates and Coating Method Using the Same to Form a Capacitor,” U. S. Patent No. 3, 330, 697, 1967
  15. Klvana D, Vaillancourt J, Kirchnerova J, Chaouki J, Appl. Catal. A: Gen., “Combustion of Methane over La0.66Sr0.34Ni0.3Co0.7O3 and La0.4Sr0.6Fe0.4 Co0.6O3 Prepared by Freeze-drying.", 109(2), 181, 1994
  16. Park JR, Lee DI, Jung SH, Kim TH, Sung JS, Song KC, Korean Chem. Eng. Res., “Preparation of Perovskite-type Oxide(La1-xSrxCo1-y FeyO3-δ) Coating Solution by Sol-gel Method.", 43(6), 740, 2005
  17. Taguchi H, Yamasaki S, Itadani A, Yosinaga M, Hirota K, Catal. Commun., “CO Oxidation on Perovskite-type LaCoO3 Synthesized Using Ethylene Glycol and Citric Acid.", 9, 1913, 2008
  18. Choi SO, Moon SH, Catal. Today., “Performance of La1-xCexFe0.7Ni0.3O3 Perovskite Catalysts for Methane Steam Reforming,”, 146, 148, 2009
  19. Nguyen SV, Szabo V, Trong On D, Kaliaguine S, Micropor. Mesopor. Mater., “Mesoporous Silica Supported LaCoO3 Perovskites as Catalysts for Methane Oxidation.", 54, 51, 2002