Issue
Korean Chemical Engineering Research,
Vol.49, No.2, 161-167, 2011
폴리(비닐피리딘-co-메틸메타아크릴레이트) 기반 열안정성 유기솔더보존제의 합성 및 평가
Synthesis and Evaluation of Thermo-stable Organic Solderability Preservatives Based Upon Poly(vinyl pyridine-co-methylmethacrylate)
최근 모바일 전자 제품의 많은 사용으로 인하여 전자 기판의 기계적 충격에 대한 기준이 강화되고 있다. 따라서, 전자 기판의 패키징 공정에서 칩과 기판 사이 솔더 볼의 접합방법은 제품의 안정성과 신뢰성 확보를 위하여 기존의 금속간 화합물을 사용하는 방식에서 유기 솔더 보존제(OSP)를 사용하는 방법으로 전환되고 있다. 그러나 기존의 OSP들은 공정상에서의 열안정성 등의 여러 가지 단점이 발견되어 이를 보완하기 위한 새로운 OSP의 개발이 요구되고 있다. 본 연구에서는 폴리(비닐피리딘-co-메틸메타아크릴레이트) 기반 열안정성 OSP를 개발하여 구리 박막에 적용, 분석 및 평가함으로써 구리 박막에 대한 산화방지성, OSP의 열 안정성 및 후융해 공정 시 산 또는 알코올 수용액에 의해서 쉽게 용해되는 특성 등을 조사하였다. 그 결과 합성된 공중합체는 구리 시편과의 접착성이 우수하며 산 또는 알코올 성분에 쉽게 용해되고, 높은 열 안정성 및 산화방지 특성을 갖고 있을 뿐만 아니라 기존의 알릴아민이나 아크릴아마이드 함유 공중합체에 비하여 가격, 취성, 흡습성 면에서 더 좋은 특성을 보여주었다.
Recent popularity in mobile electronics requires higher standard on the mechanical strength of electronic packaging. Thus, the method of soldering between chip and substrate in electronic packaging process is changing from conventional method using intermetallic compound to a new method using organic solderability preservatives (OSP) in order to improve the stability and the reliability of final product. Since current OSPs have several serious problems like thermo-stability during packaging process, however, it is necessary to develop new OSPs having thermo-stability. The main purpose of this study is to develop various thermo-stable OSPs based upon poly(vinyl pyridine-co- methylmethacrylate) and to evaluate their anti-oxidation property protecting Cu pad, thermo-stability and solubility to acid- or alcohol-containing aqueous solution during pos-fluxing. All OSPs showed not only good anti-oxidation property, thermo-stability and solubility but also more advantages like low cost, less odor, and less hygroscopic.
[References]
  1. Tummala R, Rymaszewski EJ, Klopfenstein AG, Microelectronic Packaging Handbook, International Thompson Publishing, Vol. 2, 2nd Edition, New York, 1997
  2. Tummala R, Advancing Microelectronics., “SOP: Microelectronic Systems Packaging Technology for the 21st Century.", 26(3), 29, 1999
  3. Tee TY, Luan J, Pek E, Limb CT, Zhong Z, Electronic Components and Technology Conference, 1088, 2004
  4. Zhang X, Tee TY, Electronic Components and Technology Conference, 593, 2004
  5. Tee TY, Ng HS, Lini CT, Pck E, Zhong Z, Electronic Components and Technology Conference, 121, 2004
  6. Denis V, Gilles C, Electronic Manufacturing Technology Symposium, 18th IEEE/CMPT International., 101, 1995
  7. Watanabe Y, International Symposium on Advanced Packaging Materials, 165, 2001
  8. Lee DJ, Lee HS, Microelectronics Reliability., “Major Factors to the Solder Joint Strength of ENIG Layer in FC BGA Package,”, 46, 1119, 2006
  9. Chang D, Bai F, Wang YP, Hsiao CS, Electronics Packaging Technology Conference., 149, 2004
  10. Lee HS, Huh H, Park SE, “Method for Manufacturing BGA Package Using Organic Solderability Preservatives,” Korea Patent No. 547,352, 2006
  11. Choi HS, Lee CS, Huh KM, Lee HJ, Im JH, Lee HS, Kim CH, “Organic Solderability Preservatives on Solder Pad for Microelectronic Package Applications and Preparation Method Thereof,” Korea Patent No. 762,961, 2007
  12. Malynych S, Luzinov I, Chumanov G, J. Phys. Chem. B, “Poly(Vinyl Pyridine) as a Universal Surface Modifier for Immobilization of Nanoparticles.", 106(6), 1280, 2002
  13. Im JH, Lee HJ, Huh KM, Kim CH, Lee HS, Lee CS, Choi HS, Polym.(Korea), “Preparation and Evaluation of Poly(vinyl pyridine) Copolymers for Organic Solderability Preservatives,”, 30(6), 519, 2006
  14. Lee JW, Kim CH, Lee HS, Huh KM, Lee CS, Choi HS, Korean Chem. Eng. Res., “Effect of MeOH/IPA Ratio on Coating and Fluxing of Organic Solderability Preservatives,”, 46(2), 402, 2008
  15. Kim DH, Jo WH, Macromolecules, 33(8), 3050, 2000
  16. LEE LH, J. Adhes., “Molecular Bonding and Adhesion at Polymer-Metal Interphases,", 46(1), 15, 1994
  17. Brandrup J, Immergut EH, Polymer Handbook, 3rd ed., John Wiley and Sons, New York, 1989