Issue
Korean Chemical Engineering Research,
Vol.49, No.2, 129-136, 2011
Simulated Moving Bed Reactor(SMBR)의 원리
Principles of Simulated Moving Bed Reactor(SMBR)
SMB 공정은 주로 4개의 구역으로 나뉘어지는 다수의 크로마토그래피 컬럼으로 구성된다. 이러한 특성은 회분식 크로마토그래피 공정보다 우수한 이성분계 물질의 연속적인 분리를 구현한다. SMB는 회분식 크로마토그래피에 비해 연속성 및 높은 생산성과 순도로 목적물질을 분리해 낼 수 있는 장점을 갖는다. 경제적이며 효율적인 공정의 운용을 위해 반응과 회수를 결합시키는 연구가 보고되고 있으며, 이와 같은 연구 중 SMBR은 연속분리공정인 SMB와 반응기가 결합된 공정이다. 다양한 반응을 적용한 SMBR에 대해 많은 연구가 진행되고 있으며, 촉매반응, 효소반응, 이온 교환 수지를 통한 화학반응이 주를 이루고 있다. 초기의 SMBR은 촉매를 사용한 고정층의 형태이며, 유동성 효소를 사용하는 SMBR, 고정화 효소를 사용하는 SMBR, 반응구역과 흡착구역이 분리되어 있는 SMBR순으로 발전하였다. 공정 설계에 있어서 필수적인 모델링 및 최적화를 위하여 대류현상만을 고려한 간단한 기법이 있지만, 실제 물질거동을 설명하기 위해서는 축 방향 분산이나 물질전달 저항을 고려한 복잡한 해석을 필요로 한다. SMBR같이 반응과 분리가 결합된 공정의 경우 설비의 간소화를 통한 시설비용의 축소뿐 아니라 가역반응평형의 극복을 통해 물질의 순도와 수율을 향상시킬 수 있는 장점이 있다.
Simulated Moving Bed(SMB) process consists of multiple chromatographic columns, which are usually partitioned into four zones. Such a process characteristic allows a continuous binary separations those are impracticable in conventional batch chromatographic processes. Compared with batch chromatography, SMB has advantages of continuity, high purity and productivity. Various researches have been reported for the integration of reaction and recovery during process operation on the purpose of economics and effectiveness. Simulated Moving Bed Reactor(SMBR) is introduced to combine SMB as a continuous separation process and reactor. Several cases of SMBR have been reported for diverse reactions with catalytic, enzymatic and chemical reaction on ion exchange resin as main streams. With an early type of fixed bed using catalyst, SMBR has been developed as SMB using fluidized enzyme, SMB with immobilized enzyme and SMB with discrete reaction region. For simple modeling and optimization of SMBR, a method considering convection only is possible. A complex method considering axial dispersion and mass transfer resistance is needed to explain the real behavior of solutes in SMBR. By combining reaction and separation, SMBR has benefits of lower installation cost by minimizing equipment use, higher purity and yield by avoiding the equilibrium restriction in case of reversible reaction.
[References]
  1. Shuler, M. L. and Kargi, F., Bioprocess engineering: Basic concepts, 2nd ed., Prentice Hall PTR., Upper Saddle River, NJ, 2002
  2. Harrison RG, Todd P, Rudge SR, Petrides DP, Bio-Separations Science and Engineering, 1st ed., Oxford University Press, New York, NY, 2003
  3. Broughton DB, Chem. Eng. Prog., “Molex Case History of A Process", 64(1), 60, 1968
  4. Broughton DB, Neuzil RW, Pharis JM. Brearley CS, Chem. Eng. Prog., “The Parex Process for Recovering Paraxylene.”, 66(1), 70, 1970
  5. Ma Z, Wang NH, AIChE J., “Standing Wave Analysis of SMB Chromatography: Linear Systems.”, 43(10), 2488, 1997
  6. Juza M, Mazzotti M, Morbidelli M, Trends Biotechnol., “Simulated Movingbed Chromatography and Its Application to Chirotechnology.”, 18(3), 108, 2000
  7. Lee CH, Koo YM, Korean. J. Biotechnol. Bioeng., “Simulated Moving Bed.”, 20(3), 192, 2005
  8. Afonso CAM, Crespo JG., “Green Separation Processes: Fundamentals and Applications,” 1st ed., Wiley-VCH., Weinheim, Germany, 2005
  9. Minceva M, Gomes PS, Meshko V, Rodrigues AE, Chem. Eng. J., “Simulated Moving Bed Reactor for Isomerization and Separation of p-xylene.”, 140(1-3), 305, 2008
  10. Pereira CSM, Zabka M, Silva VMTM, Rodrigues AE, Chem. Eng. Sci., “A Novel Process for the Ethyl Lactate Synthesis in a Simulated Moving Bed Reactor (SMBR).”, 64(14), 3301, 2009
  11. J. Chromatogr. A., Meurer M, Althehoner U, Strube J, Schmidt-Traub H., “Dynamic Simulation of Simulated Moving Bed Chromatographic Reactors.", 769(1), 71, 1997
  12. Kulprathipanja S, Reactive Separation Processes, 1st ed., Tayler & Francis, New York, NY, 2002
  13. Dinwiddie JA, Morgan WA, “Fixes Bed Type Reactor,” U.S. Patent No. 2,976,132, 1961
  14. Scott CD, Spence RD, Sisson WG, J. Chromutogr. A., “Pressurized, Annular Chromatograph for Continuous Separations.", 126, 381, 1976
  15. Shieh MT, Barker PE, J. Chem. Technol. Biotechnol., “Combined Bioreaction and Separation in a Simulated Counter-Current Chromatographic Bioreactor Separator for the Hydrolysis of Lactose,”, 66(3), 265, 1996
  16. Dunnebier G, Fricke J, Klatt KU, Ind. Eng. Chem. Res., “Optimal Design and Operation of Simulated Moving Bed Chromatographic Reactors.", 39(7), 2290, 2000
  17. Hashimoto K, Adachi S, Noujima H, Ueda Y, Biotechnol. Bioeng., “New Process Combining Adsorption and Enzyme Reaction for Producing Higher-fructose Syrup.", 25(10), 2371, 1983
  18. Zhang Y, Hidajat K, Ray AK, Biochem. Eng. J., “Optimal Design and Operation of SMB Bioreactor: Production of High Fructose Syrup By Isomerization of Glucose.”, 21(2), 111, 2004
  19. da Silva EAB, de Souza AAU, de Souza SGU, Rodrigues AE, Chem. Eng. J., “Analysis of the High-fructose Syrup Production Using Reactive SMB Technology.", 118(3), 167, 2006
  20. Finkler TF, Kupper A, Engell S, “Optimization of a Reactive SMB Process Applied to the Purification of Fructose Syrup,” AIChE Annual Meeting., Nov, Nashville, 2009
  21. Toumi A, Engell S, Diehl A, Bock HG, Schloder J, Chem. Eng. Process., “Efficient Optimization of Simulated Moving Bed Processes.”, 46(11), 1067, 2007
  22. Toumi A, Engell S, Chem. Eng. Sci., “Optimization-based Control of a Reactive Simulated Moving Bed Process for Glucose Isomerization.", 59(18), 3777, 2004
  23. Kim K, Kim JI, Kim H, Yang J, Lee KS, Koo YM, Ind. Eng. Chem. Res., “Experimental Verification of Bilevel Optimizing Control for SMB Technology.", 49(18), 8593, 2010
  24. Natarajan S, Lee JH, Comput. Chem. Eng., “Repetitive Model Predictive Control Applied to a Simulated Moving Bed Chromatography System.", 24(2-7), 1127, 2000
  25. Wang C, Klatt KU, Dunnebier G, Engell S, Hanisch F, Control. Eng. Pra., “Neural Network-based Identification of SMB Chromatographic Processes.", 11(8), 949, 2003
  26. Park BJ, Lee CH, Mun S, Koo YM, Proc. Biochem., “Novel Application of Simulated Moving Bed Chromatography to Protein Refolding.”, 41(5), 1072, 2006
  27. Azevedo DCS, Rodrigues AE, Chem. Eng. J., “Design Methodology And Operation of a Simulated Moving Bed Reactor for the Inversion of Sucrose and Glucose-fructose Separation.”, 82(1-3), 95, 2001
  28. Kruglov AV, Chem. Eng. Sci., “Methanol Synthesis in a Simulated Countercurrent Moving-bed Adsorptive Catalytic Reactor.”, 49(24), 4699, 1994
  29. Kawase M, Inoue Y, Araki T, Hashimoto K, Catal. Today, “The Simulated Moving-bed Reactor for Production of Bisphenol A.”, 48(1-4), 199, 1999
  30. Ganetsos G, Barker PE, (Eds.), “Preparative and Production Scale Chromatography,” Marcel Dekker, New York, 375-394, 1993