Issue
Korean Chemical Engineering Research,
Vol.49, No.1, 21-27, 2011
메탄올 수증기 개질반응에서의 상용촉매 비교연구
A Comparative Study of Commercial Catalysts for Methanol Steam Reforming
메탄올 수증기 개질반응에 대한 적용가능성을 파악하기 위하여 메탄올 합성용 촉매인 ICI-M45와 수성가스 전환반 응용 촉매인 MDC-3와 MDC-7을 비교 연구하였다. 또한 수성가스전환 반응에 대한 세 촉매의 비교실험도 수행하였다. 그 결과 MDC-7이 메탄올 수증기 개질반응에서 가장 높은 전화율을 보였으며, H2와 CO2 생성속도 또한 높게 나타났다. 수성가스 전환반응용 촉매인 MDC-7과 메탄올 합성촉매인 ICI-M45를 이용하여 촉매 충진 방법에 따른 메탄올의 전화율에서의 변화를 살펴본 결과, MDC-7 단독보다 낮은 메탄올의 전화율을 보였다. 수성가스 전환반응에서도 MDC-7, MDC-3, 그리고 ICI-M45의 순으로 반응성이 감소하였다. 상기 두 반응에서 MDC-7이 가장 우수한 이유로는 높은 비표면적과 Cu의 분산도, 그리고 적절한 Cu와 Zn의 비율에 기인함을 확인할 수 있었다.
The comparison work was conducted for the methanol steam reforming among commercial Cu-based catalysts, viz. ICI-M45, which is for the methanol synthesis, MDC-3 and MDC-7, which are for the water-gas shift reaction. The catalytic activity for the water-gas shift reaction was also compared over three catalysts. Among them, MDC-7 showed the highest methanol conversion and formation rate of hydrogen and carbon dioxide at 473 K for the methanol steam reforming. To find out any promotional effect between ICI-M45 and MDC-7, three different packing methods with these two catalysts were examined. However, no synergistic effect was observed. The catalytic activity for watergas shift reaction decreased in the following order: MDC-7 > MDC-3 > ICI-M45. The highest activity of MDC-7 for the methanol steam reforming as well as the water-gas shift reaction can be due to its high surface area, copper dispersion, and an adequate Cu/Zn ratio.
[References]
  1. Matsumura Y, Ishibe H, Appl. Catal. B: Environ., 91(1-2), 524, 2009
  2. Sa S, Silva H, Brandao L, Sousa JM, Mendes A, Appl. Catal. B: Environ., In Press.
  3. Meshkini F, Taghizadeh M, Bahmani M, Fuel, 89, 170, 2010
  4. Peppley BA, Amphlett JC, Kearns LM, Mann RF, Appl. Catal. A: Gen., 179(1-2), 31, 1999
  5. Saito M, Murata K, Catal. Surv. Asia, 8, 285, 2004
  6. Lee JW, Jeon HJ, Hong SC, Clean Technol., 15(2), 130, 2009
  7. Figueiredo RT, Andrade HMC, Fierro JLG, J. Mol. Catal. A: Chem., 318, 15, 2010
  8. Kurr P, Kasatkin I, Girgsdies F, Trunschke A, Schlogl R, Ressler T, Appl. Catal. A: Gen., 348(2), 153, 2008
  9. Henpraserttae S, Limthongkul P, Toochinda P, Monatsh Chem., 141, 269, 2010
  10. Chen WH, Lin BJ, Int. J. Hydrog. Energy, 35, 1987, 2010
  11. Nishida K, Atake I, Li D, Shishido T, Oumi Y, Sano T, Takehira K, Appl. Catal. A: Gen., 337(1), 48, 2008
  12. Evans JW, Wainwright MS, Bridgewater AJ, Young DJ, Appl. Catal., 7, 75, 1983
  13. Jones SD, Neal LM, Hagelin-Weaver HE, Appl. Catal. B: Environ., 84(3-4), 631, 2008
  14. Lindstrom B, Pettersson LJ, Menon PG, Appl. Catal. A: Gen., 234(1-2), 111, 2002
  15. Shen JP, Song CS, Catal. Today, 77(1-2), 89, 2002
  16. Breen JP, Ross JRH, Catal. Today, 51(3-4), 521, 1999
  17. Zhang XR, Wang LC, Yao CZ, Cao Y, Dai WL, He HY, Fan KN, Catal. Lett., 102(3-4), 183, 2005
  18. Agarwal V, Patel S, Pant KK, Appl. Catal. A: Gen., 279(1-2), 155, 2005
  19. Alejo L, Lago R, Pena MA, Fierro JL, Appl. Catal. A: Gen., 162(1-2), 281, 1997
  20. Huang G, Liaw BJ, Jhang CJ, Chen YZ, Appl. Catal. A: Gen., 358(1), 7, 2009
  21. Huang TJ, Wang SW, Appl. Catal., 24, 287, 1986
  22. Wang Z, Wang W, Lu G, Int. J. Hydrog. Energy, 28, 151, 2003
  23. Seong KH, Master Dissertation, Korea Advanced Institute of Science and Technology, Daejeon, 1996
  24. Kudo S, Maki T, Miura K, Mae K, Carbon, 48, 1186, 2010
  25. Takeguchi T, Kani Y, Inoue M, Eguchi K, Catal. Lett., 83(1-2), 49, 2002
  26. Wang LC, Liu YM, Chen M, Cao Y, He HY, Wu GS, Dai WL, Fan KN, J. Catal., 246(1), 193, 2007
  27. Kam R, Selomulya C, Amal R, Scott J, J. Catal., 273, 73, 2010
  28. Shishido T, Yamamoto M, Li DL, Tian Y, Morioka H, Honda M, Sano T, Takehira K, Appl. Catal. A: Gen., 303(1), 62, 2006