Issue
Korean Chemical Engineering Research,
Vol.49, No.1, 105-108, 2011
알코올에 대한 Escherichia coli, Clostridium acetobutylicum, Saccharomyces cerevisiae의 반응
Cellular Responses to Alcohol in Escherichia coli, Clostridium acetobutylicum, and Saccharomyces cerevisiae
유가의 급등과 화석 연료에 의한 온난화 현상은 재생 가능한 대체 연료에 대한 필요성이 요구되었다. 수송용 바이오 연료를 비교하였을 때 에탄올보다 높은 알코올 경우 휘발유와 비슷한 장점을 갖는데 그 이유는 높은 에너지 밀도와 낮은 흡습성을 갖기 때문이다. 이러한 이유로 미생물의 발효는 지속적인 에너지를 얻을 수 있는 잠재적 생산자라 할 수 있다. 본 연구에서는 생물학적으로 생산되는 알코올 성분에 대하여 두 종의 세균과 한종의 효모인 Escherichia coli와 Clostridium acetobutylicum 그리고 Saccharomyces cerevisiae를 이용하여 바이오 알코올에 대한 세포 성장 정도와 함께 미생물내에 스트레스 반응 유전자들의 분석을 실시하였다. 분석한 알코올은 에탄올과 부탄올이며, 이들의 농도별 세균의 성장속도와 산화적 손상에 민감하게 반응하는 katG 유전자, 생물막 손상에 민감하게 반응하는 fabA 유전자, 단백질 손상에 민감하게 반응하는 grpE 유전자, 유전자 손상에 민감하게 반응하는 recA 유전자의 반응여부를 분석하였다. 그 결과, 에탄올과 부탄올 중 부탄올의 세포 독성이 더 높게 관찰되었으며, 부탄올의 경우 생물막 손상을 유발하는 세포내 독성효과를 지니고 있음을 확인하였다.
The increased concern for the security of the oil supply and the negative impact of fossil fuels on the environment, particularly greenhouse gas emissions, has put pressure on society to find renewable fuel alternatives. Compared to the traditional biofuel, ethanol, higher alcohols offer advantage as gasoline substitutes because of their higher energy density and lower hygroscopicity. For this reason, microbial fermentation is known as potential producers for sustainable energy carriers. In this study, bacterial responses including cellular and molecular toxicity were studied in three different microorganisms, such as Escherichia coli, Clostridium acetobutylicum, and Saccharomyces cerevisiae. In this study, it was analyzed specific stress responses caused by ethanol and buthanol using four different stress responsive genes, i.e. fabA, grpE, katG and recA. The expression levels of these genes were quantified by semi-quantitative reverse transcription-PCR. It was found that four genes have shown different responsive patterns when E. coli cultures were under stressful conditions caused by ethanol and buthanol, respectively. Therefore, in this study, the stress responsive effects caused by these alcohols and the extent of each stress response can be analyzed using the expression levels and patterns of different stress responsive genes.
[References]
  1. Liu S, Qureshi N, N. biotechnol., 26, 117, 2009
  2. You KM, Rosenfield CL, Knipple DC, Appl. Environ Microbiol., 69, 1499, 2003
  3. Atsumi S, Cann AF, Connor MR, Shen CR, Smith KM, Brynildsen MP, Chou KJY, Hanai T, Liao JC, Metab. Eng., 10, 305, 2008
  4. Knoshaug EP, Zhang M, Appl. Biochem. Biotechnol., 153(1-2), 13, 2009
  5. Zheng YN, Li LZ, Xian M, Ma YJ, Yang JM, Xu X, He DZ, J. Ind. Microbiol. Biotechnol., 36, 1127, 2009
  6. Novotny C, Flieger M, Panos J, Dolezalova L, Folia Microbiol., 37, 43, 1992
  7. Dien BS, Cotta MA, Jeffries TW, Appl. Microbiol. Biotechnol., 63(3), 258, 2003
  8. Inui M, Suda M, Kimura S, Yasuda K, Suzuki H, Toda H, Yamamoto S, Okino S, Suzuki N, Yukawa H, Appl. Microbiol. Biotechnol., 77(6), 1305, 2008
  9. Kim YS, Min J, Hong HN, Park JH, Park KS, Gu MB, Chmosphere, 66, 1243, 2007
  10. Lee SY, Min J, J. Microbiol. Biotechnol., 18, 392, 2008
  11. Mishra P, Prasad R, Appl. Microbiol. Biotechnol., 30, 294, 1989
  12. Petrov VV, Okorokov LA, Yeast, 6, 311, 1990