Issue
Korean Chemical Engineering Research,
Vol.49, No.1, 47-55, 2011
고무사출성형의 적정설계
Optimum Design of Rubber Injection Molding Process
K사의 고무 사출성형에 있어서 애로사항인 등속조인트 부트(boots)의 크랙(crack) 발생 등의 문제점을 해결하기 위하여, 상용 CAE 프로그램인 MOLDFLOW(Ver. 5.2)를 이용한 전산모사를 수행하여 적정금형설계를 도출하고 적정작업조건을 구축하였다. 그 결과 크 의 발생 원인은 크 이 발생하는 위치에 형성되는 weld 및 meld line의 형성 때문이고, 또한 크 이 발생하는 위치에서의 가류(curing)가 불완전한 것이 확인되었다. 이와 같은 weld 및 meld line의 형성을 방지하기 위해서 게이트(gate)의 위치를 변경하고 최적위치에 설계함으로써, 유동선단(melt front)의 충돌 또는 수지흐름의 만남을 최소화하는 충전패턴(fill pattern)을 형성하고 부트 안쪽 하단의 크 발생을 방지하였다. Weld 및 meld line과 에어트랩(air trap) 불량이 가장 큰 게이트 위치는 각각 최적 게이트위치를 기준으로 서로 정반대 방향임이 관찰되었다. 한편 몰드(mold)의 온도를 170 ℃로 유지하게 함으로써 크 이 발생했던 위치에 가류조건을 만족시켰다.
The optimum mold design and the optimum process condition were constructed upon executing process simulation of rubber injection molding with the commercial CAE program of MOLDFLOW (Ver. 5.2) in order to solve the process-problems of K company relating to cracks, which occurs at the inner cavity wall of C. V. joint boots. As a result it was confirmed that the real cracks occurs at the exactly same position of the cavity as exhibits the defects of weld and meld line and unsatisfactory curing according to the result of simulation. In order to prevent the occurrence of weld and meld line at the defect-position, the location of gate was altered to the optimum position of the cavity. Consequently the filling pattern was established to minimize the degree of the melt-fronts confronting or the melt-flows melding to prevent the occurrence of weld and meld line at the defect-position. It was observed that both gate-positions to maximize the degree of the formation of weld and meld line and air traps are located, respectively, in opposite direction each other with reference to the optimum gate position. In addition, the temperature of mold was raised by 10 o℃ and maintained at 170 ℃ for satisfactory curing.
[References]
  1. Ryu IH, Cho J, Lim Y, KSAE Symposium on driving and braking, September, Seoul, 2007
  2. Lee HW, Kim SH, Lee CH, Huh H, Lee JH, Oh ST, Transactions of the KSME A, 21, 2121, 1997
  3. Lee HW, Kim SH, Huh H, Proceedings of KSME Spring Meetings A, April, Chonan, 1999
  4. Harry DH, Parrot RG, Polym. Eng. Sci., 10, 209, 1970
  5. Gao F, Patterson WI, Kamal MR, Polym. Eng. Sci., 36(9), 1272, 1996
  6. Lee YB, Kwon TH, J. Mater. Process. Technol., 111, 214, 2001
  7. Hieber CA, Shen SF, J. Non-Newton. Fluid Mech., 7, 1, 1980
  8. Tucker C, Fundamentals of Computer Modeling for Polymer Processing, Hanser, Munich, 1989
  9. Kennedy P, Flow Analysis of Injection Molds, Hanser, Munich, 1995
  10. Chiang HH, Hieber CA, Wang KK, Polym. Eng. Sci., 31, 116, 1991
  11. Turng LS, Wang VW, J. Reinf. Plast. Compos., 12, 506, 1993