Issue
Korean Chemical Engineering Research,
Vol.49, No.1, 28-34, 2011
양극산화를 이용한 Titania Nanotube(TNT) 박막 제조
Preparation of Titania Nanotube Thin films by Anodizing
티타니아 나노튜브(Titania nanotube, TNT)는 티타늄을 F- 이온을 함유한 전해질 하에서 전기로 양극산화 시켜 제조한 튜브형태의 박막으로 광학 활성을 가진다. 전해질은 증류수와 포름아마이드를 용매로 사용하였으며 HF, NaF, NH4F를 F-이온 성분으로 사용하였다. 전압과 양극산화 시간이 증가함에 따라 TNT의 길이와 직경도 증가하였다. 양극산화에 의해 제조된 TNT는 매우 규칙적인 튜브형태였으며, 제조 조건에 따라 길이는 최대 13.7 μm이었다. 생성된 티타니아는 비정질이었으며 열처리에 의해 아나타제 결정으로 바뀌었다.
Titania nanotube(TNT), which is a tube shaped thin film manufactured by anodizing titanium under F- ion electrolyte, has photo activity. Distilled water and formamide were used as solvent, and HF, NaF, NH4F were used as main F- ions for the electrolyte. The length and the diameter of TNT increased as the voltage and anodizing time increased. TNT prepared by anodizing was a very ordered tube, and had a maximum length of 13.7 μm depending on the conditions of manufacturing. Titania prepared by anodizing was amorphous, and became an anatase crystal after heat treatment.
[References]
  1. Ahn S, Choi LK, Jung J, J. Adv. Oxid. Technol., 10, 354, 2007
  2. Zwilling M, Aucouturier M, Darque-Ceretti E, Electrochim. Acta, 45, 921, 1991
  3. Varghese OK, Mor GK, Grimes CA, Paulose M, Mukherjee N, J. Nanosci. Nanotechnol, 4, 733, 2004
  4. Paulose M, Varghese OK, Mor GK, Grimes CA, Ong KG, Nanotechnology, 17, 398, 2006
  5. Mor GK, Shankar K, Varghese OK, Grimes CA, J. Mater. Res., 19, 2989, 2004
  6. Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA, Nano Lett, 5, 191, 2005
  7. Varghese OK, Paulose M, Shankar K, Mor GK, Grimes CA, J. Nanosci. Nanotechnol., 5, 1158, 2005
  8. Raja KS, Misra M, Mahajan VK, Gandhi T, Pillai P, Mohapatra SK, J. Power Sources, 161(2), 1450, 2006
  9. Raja KS, Mahajan VK, Misra M, J. Power Sources, 159(2), 1258, 2006
  10. Macak JM, Tsuchiya H, Ghicov A, Schmuki P, Electrochem. Commun., 7, 1138, 2005
  11. Perez-Blanco JM, Barber GD, Solar Energy Materials and Solar Cells, 92, 997, 2008
  12. Yang DJ, Park H, Cho SJ, Kim HG, Choi WY, J. Phys. Chem. Solids, 69, 1272, 2008
  13. Paulose M, Shankar K, Varghese OK, Mor GK, Grimes CA, J. Phys. D: Appl. Phys., 39, 2498, 2006
  14. Ong KG, Varghese OK, Mor GK, Shankar K, Grimes CA, Solar Energy Materials & Solar Cells, 91, 250, 2007
  15. Pillai P, Raja KS, Misra M, J. Power Sources, 161(1), 524, 2006
  16. Paulose M, Varghese OK, Mor GK, Grimes CA, Nanotechnology, 17, 398, 2006
  17. Macak JM, Tsuchiya H, Bauer S, Ghicov A, Schmuki P, Barczuk PJ, Nowakowska MZ, Chojak M, Kulesza PJ, Electrochem. Commun., 7, 1417, 2005
  18. Adachi M, Murata Y, Harada M, Yoshikawa S, Chem. Lett., 29(8), 942, 2000
  19. Chu SZ, Inoue S, Wada K, Li D, Haneda H, Awatsu S, J. Phys. Chem. B, 107(27), 6586, 2003
  20. Gong D, Grimes CA, Varghese OK, Hu W, Singh RS, Chen Z, Dickey EC, J. Mater. Res., 16, 3331, 2001
  21. Cai Q, Paulose M, Varghese OK, Grimes CA, J. Mater. Res., 20, 230, 2005
  22. Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA, Nano Lett., 5, 191, 2005
  23. Lee WJ, Alhoshan M, Smyrl WH, J. Electrochem. Soc., 153, 499, 2006
  24. Kang SH, Kim JY, Kim HS, Sung YE, J. Ind. Eng. Chem., 14(1), 52, 2008
  25. Shankar K, Mor GK, Prakasam HE, Yoriya S, Paulose M, Varghese OK, Grimes CA, Nanotechnology, 18, 065707, 2007
  26. Paulose M, Shankar K, Yoriya S, Prakasam HE, Varghese OK, Mor GK, Latempa TA, Fitzgerald A, Grimes CA, J. Phys. Chem. B, 110(33), 16179, 2006
  27. Paulose M, Prakasam HE, Varghese OK, Peng L, Popat KC, Mor GK, Desai TA, Grimes CA, J. Phys. Chem. C, 111, 14992, 2007