Issue
Korean Chemical Engineering Research,
Vol.48, No.5, 660-667, 2010
폴리이미드 중공사 막을 이용한 N2/SF6 혼합기체 분리에 관한 연구
Study on the Separation of N2/SF6 Mixture Gas Using Polyimide Hollow Fiber Membrane
본 연구에서는 고분자 막을 이용하여 6대 온실가스 중 가장 높은 지구온난화지수를 갖는 육불화황 (sulfur hexafluoride, SF6)의 회수에 관한 연구를 실시하였다. 막 소재로 이미드 계열의 Matrimid 5218 소재를 건/습식 상전이 법을 이용하여 중공사 형태로 제조하고, 표면 실리콘 코팅 후 모듈을 제조하였다. 제조된 중공사 막은 전자주사현미경 관찰을 통하여 외부 표면에 치밀한 선택층과 망상구조의 하부로 이루어진 비대칭 구조를 확인하였다. 막의 기체투과 특성 확인을 위하여 온도와 압력 변화에 따른 N2, SF6 단일 기체투과를 실시하였으며, 운전 조건에 따라서 0.78~1.36 GPU의 N2 투과도와 2.44-5.08의 N2/SF6 선택도를 나타냈었다. 제조된 모듈의 혼합기체 분리거동 관찰을 위하여 10 vol.% SF6 농도를 갖는 N2/SF6 혼합기체를 이용하여 온도, 압력, retentate 유량을 달리하여 실시하였으며, 실험을 통하여 압력과 온도 증가 및 retentate 유량 감소에 따라서 회수된 가스 중에 SF6의 농도는 증가되어 최고 37.5 vol.%를 나타낸 반면 회수율은 감소되는 경향을 나타내었으며, 동일한 온도와 압력에서 retentate 유량 증가에 따라서 SF6 농도는 감소되는 반면 회수율이 증가하여 최고 89%의 회수율을 나타내었다.
In this research polyimide, Matrimid 5218, hollow fiber membrane was used to recover sulfur hexafluoride(SF6) which is one of the six greenhouse gases from N2/SF6 mixture gas. Fibers were spun from using dry-wet phase inversion method. The module was manufactured by fabricating fibers after surface coating with silicone elastomer. The scanning electron microscopy(SEM) studies showed that the produced fibers typically had an asymmetric structure; a dense top layer supported by a sponge-like substructure. The developed module had a permeance of 0.78-1.36 GPU for N2 with N2/SF6 selectivity of 2.44-5.08 at various pressure and temperature. For recovery of SF6, a membrane module and 10 vol.% SF6 from N2/SF6 mixture gas was used. The effects of various operating condition such as pressure, temperature, and retentate side flow rate were tested. When pressure and temperature were increased and retentate flow rate was decreased, the SF6 purity in recovered gas was increased up to 37.5 vol.% with decreasing recovery ratio. When retentate flow rate was increased pressure and temperature was decreased, the SF6 recovery ratio in retentate side was increased up to 89% with decreasing the SF6 purity in retentate side.
[References]
  1. Zel LVD, Electric Pow. Res. Inst., October 14, 2002
  2. Yamamoto O, Takuma T, Kinouchi M, IEEE Electr. Insul. Mag., 18, 32, 2002
  3. Li YE, US patent No. 6,389, 845 B1, 2002
  4. Kang YS, Kim BS, Nam SJ, Lee KH, Freedom academy, Seoul, 1996
  5. Shiojiri K, Yanagisawa Y, Yamasaki A, Kiyono F, J. Membr. Sci., 282(1-2), 442, 2006
  6. Kim JH, Rhim JW, Lee SB, (Korean) Membr. J., 12, 121, 2002
  7. Kim DH, An YM, Jo HD, Park JS, Lee HK, (Korean) Membr. J., 19, 244, 2009
  8. Park HH, Deshwal BR, Jo HD, Choi WK, Kim IW, Lee HK, Desalination, 243(1-3), 52, 2009
  9. Park HH, Deshwal BR, Kim IW, Lee HK, J. Membr. Sci., 319(1-2), 29, 2008
  10. An YM, Kim DH, Jo HD, Seo YS, Park YS, Lee HK, (Korean) Membr. J., 19, 261, 2009
  11. Ulbricht M, Polymer, 47(7), 2217, 2006
  12. Carruthers SB, Ramos GL, Koros WJ, J. Appl. Polym. Sci., 90(2), 399, 2003
  13. Ho WS, Winston, Sirkar KK, “Membrane Handbook,” Van Nostrand Reinhold, NY, 1992
  14. Kim JH, Hong SK, Park SJ, Korean Chem. Eng. Res., 45(6), 619, 2007
  15. Mohammadi T, Moghadam MT, Saeidi M, Mahdyarfar M, Ind. Eng. Chem. Res., 47(19), 7361, 2008
  16. Wilks B, Rezac ME, J. Appl. Polym. Sci., 85, 2433, 2002