Issue
Korean Chemical Engineering Research,
Vol.48, No.5, 643-648, 2010
금속염화물을 첨가한 루이스산 이온성 액체 촉매를 이용한 대두유로부터 바이오디젤 합성
Synthesis of Biodiesel from Soybean Oil Using Lewis Acidic Ionic Liquids Containing Metal Chloride Salts
본 연구에서는 이온성 액체인 염화콜린에 5가지의 금속염화물을 첨가하여 루이스산 이온성 액체 촉매를 제조하고, 이 촉매를 사용하여 대두유로부터 바이오디젤을 합성하였다. 먼저 단독의 금속염화물인 염화주석과 염화아연, 염화알루미늄, 염화철(III), 염화구리(I) 촉매에 대하여 363~423 K 온도 범위에서 에스터 교환 반응의 반응성을 조사하였다. 5가지의 금속염화물 중 염화주석이 우수한 촉매 활성을 나타내었고, 이러한 경향과 같이 5가지의 루이스산 이온성 액체 촉매 중 [Me3NC2H4OH]Cl-2SnCl2의 촉매가 403 K에서 14시간 동안 유지:메탄올:촉매의 몰 비율 1:12:0.9인 조건으로 최대 91.1%의 높은 반응수율을 나타내었다. 단독의 염화주석 촉매와는 달리, [Me3NC2H4OH]Cl-2SnCl2의 촉매는 반응 후 액체-액체 이상계를 형성하여 반응물과 생성물로부터 쉽게 분리할 수 있으며, 5회 이상 재사용 후에도 활성이 거의 감소하지 않았다. 이러한 결과는 촉매의 수분에 대해 안정성과 강한 루이스 산성도의 특성에 기인한 것으로 생각된다. 또한 촉매에 대한 반응시간과 촉매 및 메탄올 몰 비율 등의 반응변수들에 대한 영향이 조사되었다.
Production of biodiesel from soybean oil catalyzed by Lewis acidic ionic liquids(ILs) containing metal chloride salts was investigated in this study. Metal chloride salts, such as SnCl2, ZnCl2, AlCl3, FeCl3 and CuCl, were screened for oil transesterification in the range of 363-423 K. Among these metal chlorides, tin chloride showed particularly high catalytic property for the oil transesterification. Similarly, among these Lewis acidic ionic liquid catalysts, [Me3NC2H4OH]Cl-2SnCl2 resulted in a high fatty acid methyl esters(FAMEs) content of 91.1% under the following reaction conditions: 403 K, 14 h, and a molar ratio of 1:12:0.9 (oil:methanol:catalyst). Unlike the pure tin chloride catalysts, Lewis acidic ILs containing tin chloride [Me3NC2H4OH]Cl-2SnCl2 catalyst could be recycled up to five times without any significant loss of activity by separating from the FAMEs with simple decantation. The Lewis acidity and high moisture-stability of this catalyst appeared to be responsible for the excellent catalytic performance. The effects of reaction time and the molar ratio of methanol/catalyst to oil on the FAMEs production were also studied in this work.
[References]
  1. Park JI, Woo HC, Lee JH, Korean Chem. Eng. Res., 46(5), 833, 2008
  2. Ma FR, Hanna MA, Bioresour. Technol., 70(1), 1, 1999
  3. Madras G, Kolluru C, Kumar R, Fuel, 83, 2029, 2004
  4. Varma MN, Madras G, Ind. Eng. Chem. Res., 46(1), 1, 2007
  5. Marchetti JM, Miguel VU, Errazu AF, Renew. Sustain. Energ. Rev., 11, 1300, 2007
  6. Jordan V, Gutsche B, Chemosphere, 43, 99, 2001
  7. Lee H, Lee JS, Ahn BS, Kim HS, J. Korean Ind. Eng. Chem., 16(5), 595, 2005
  8. Sheldon R, Chem. Commun., 2399, 2001
  9. Gordon CM, Appl. Catal. A: Gen., 222(1-2), 101, 2001
  10. Shim HL, Lee MK, Yu JI, Park DW, Clean Technol., 14(3), 166, 2008
  11. Hubert VM, Emmanuelle S, Paulo DCC, Friedrich HW, “Immobilized Ionic Liquids,” EP Patent No. 1, 230, 023, 2001
  12. Sunitha S, Kanjilal S, Reddy PS, Prasad RBN, Tetrahedron Letters, 48, 6962, 2007
  13. Yang Y, Kou Y, Chem. Commun., 2, 226, 2004
  14. KS M 2413, “Fat and Oil Derivatives-Fatty Acid Methyl Esters (FAME)-Determination of Ester and Linolenic Acid Methyl Ester Contents,” KATS, 2004
  15. Abreu FR, Lima DG, Hamu EH, Wolf C, Suarez PAZ, J. Mol. Catal. A-Chem., 209(1-2), 29, 2004
  16. Bhattacharya AK, Hartridge A, Mallick KK, Werrett CR, Woodhead JL, J. Mater. Sci., 31(17), 4479, 1996
  17. Abbott AP, Capper G, Davies DL, Rasheed R, Inorg. Chem., 43(11), 3447, 2004
  18. Abbott AP, Capper G, Davies DL, Munro HL, Rasheed RK, Tambyrajah V, Chem. Commun., 19, 2010, 2001
  19. King D, Mantz R, Osteryoung R, J. Am. Chem. Soc., 118(47), 11933, 1996
  20. Hong YK, Hong WH, Korean Chem. Eng. Res., 45(5), 424, 2007