Issue
Korean Chemical Engineering Research,
Vol.48, No.5, 627-631, 2010
금속 불화물 첨가제가 α-알루미나 입자생성에 미치는 영향
Effect of Metal Fluoride on the Formation of α-Alumina Particles
질산 알루미늄과 암모니아 용액을 출발물질로 하고 또한 금속 불화물을 첨가제로 사용하여 α-알루미나 입자를 침전법으로 제조하였다. 이 때 제조과정에서 사용된 용매의 영향과 AlF3, CaF2, MnF2 등의 3 가지 금속 불화물 첨가제가 α-알루미나로의 상전이 온도, 입자 크기 및 형태 등에 미치는 영향에 대해 조사하였다. α-알루미나 제조시 사용된 용매는 상전이 온도에는 큰 영향을 미치지 않는 반면 입자 크기에 영향을 미쳤다. 첨가제 조성에 따라 α-알루미나 상전이 온도가 차이가 났으나(AlF3(800 ℃) < MnF2(900 ℃) < CaF2(950 ℃)), 첨가제를 사용하지 않은 경우(1,100 ℃)보다는 모두 상전이 온도가 낮음을 알 수 있었다. 3 가지 첨가제를 사용한 경우 모두 판상의 α-알루미나 입자들이 얻어졌으나, 그 중 MnF2를 첨가한 경우에 가장 작은 크기의 α-알루미나 입자들이 생성되었다.
α-Alumna particles were prepared by a precipitation method with metal fluoride additive. Aluminum nitrate and ammonia solution were used as starting materials. AlF3, CaF2, and MnF2 were utilized as additives. The effects of precipitation solvent and metal fluoride on the phase transformation temperature, size and morphology of α-alumna particles were investigated. The solvent for precipitation did not affect the phase transformation temperature, while it influenced the size of α-alumna particles. The phase transformation temperature to α-alumna was reduced by addition of metal fluoride and was different with metal cation in metal fluoride (AlF3(800 ℃) < MnF2(900 ℃) < CaF2(950 ℃)). The addition of each of three metal fluorides led to the formation of platelike particles and, among the three additives, MnF2 additive resulted in the formation of relatively small particle.
[References]
  1. Hill RF, Danzer R, Paine RT, J. Am. Ceram. Soc., 84(3), 514, 2001
  2. Lu H, Sun H, Mao A, Yang H, Wang H, Hu X, J. Mater. Sci. Eng., A, 406, 19, 2005
  3. Niihara K, J. Ceram. Soc., Jpn., 99, 974, 1991
  4. Lu HX, Sun HW, Li GX, Chen CP, Yang DL, Lu X, Ceram. Int., 31, 105, 2005
  5. Wu Y, Zhang Y, Huang X, Guo J, Ceram. Int., 27, 265, 2001
  6. Wu Y, Zhang Y, Pezzotti G, Guo J, Mater. Lett., 52, 366, 2002
  7. Fu G, Wang J, Kang J, Trans. Nonferrous Met. Soc. China, 18, 743, 2008
  8. Zivkovic Z, Strbac N, Sestak J, Thermochim. Acta, 266, 293, 1995
  9. Li J, Wu Y, Pan Y, Liu W, Guo J, Ceram. Int., 33, 919, 2007
  10. Okada K, Hattori A, Taniguchi T, Nukui A, Das RN, J. Am. Ceram. Soc., 83(4), 928, 2000
  11. Odaka A, Yamaguchi T, Fujita T, Taruta S, Kitajima K, J. Mater. Sci., 43(8), 2713, 2008
  12. Wang S, Zhai YC, Li XA, Li Y, Wang KM, J. Am. Ceram. Soc., 89(11), 3577, 2006
  13. Bell NS, Cho SB, Adair JH, J. Am. Ceram. Soc., 81, 1411, 1998
  14. Wang S, Li X, Wang S, Li Y, Zhai Y, Mater. Lett., 62, 3552, 2008
  15. Kaliszew MS, Heuer AH, J. Am. Ceram. Soc., 73, 1504, 1990
  16. Kim HJ, Kim TG, Kim JJ, Park SS, Hong SS, Lee GD, J. Phys. Chem. Solid, 69, 1521, 2008