Issue
Korean Chemical Engineering Research,
Vol.48, No.5, 621-626, 2010
폴리스티렌계 고분자에 고정화된 이온성 액체 촉매의 제조와 알릴글리시딜카보네이트 합성 반응 특성
Preparation, Characterization and Catalytic Performance of Ionic Liquid Immobilized onto Polystyrene-based Polymer for the Synthesis of Allyl Glycidyl Carbonate
본 연구에서는 이미다졸계의 이온성액체를 폴리스티렌계 고분자에 고정화시킨 촉매를 제조하고, 알릴글리시딜에테르(AGE)와 이산화탄소의 부가반응을 통한 알릴글리시딜카보네이트의 합성반응에서 이 촉매의 반응특성을 고찰하였다. 고정화된 이온성액체는 공중합된 폴리스티렌계 고분자에 이미다졸이 고정화됨으로써 형성되었다. 제조된 촉매에 대해서 EA, FT-IR, TGA 그리고 SEM 등 다양한 기기분석을 통하여 특성분석을 수행하였다. 고정화된 이온성액체 촉매는 반응온도 120 ℃, 이산화탄소 압력 1.48 MPa에서 AGE 전환율이 80%이고 생성물의 선택도가 96% 이상으로 우수한 반응성을 나타내었다. 또한 고정화된 이온성액체 촉매는 4회 연속 사용하여도 초기의 활성이 크게 감소하지 않아 안정성이 좋은 것으로 나타났다.
In this study, imidazole-based ionic liquid on polystyrene was prepared and its catalytic performance in the cycloaddition of CO2 with allyl glycidyl ether(AGE) to produce allyl glycidyl carbonate was investigated. The ionic liquid was generated on the polystyrene-based polymer through the immobilization of imidazole. The prepared catalyst was characterized using a number of instrumental analysis including EA, FT-IR, TGA and SEM. The immobilized ionic liquid showed very good catalytic activity for the cycloaddition of CO2 with AGE, having 80% of AGE conversion with over 96% of the carbonate selectivity at 120 ℃ under 1.48 MPa CO2 pressure. The immobilized ionic liquid can be used for the reaction up to four consecutive runs without significant loss of its catalytic activity.
[References]
  1. Romano U, Chim. Ind., 75, 303, 1993
  2. Shaikh AA, Sivaram S, Chem. Rev., 96(3), 951, 1996
  3. Weissermel K, Arpe HJ, Industral Organic Chemestry, 3rd ed., Wiley-VCH, New York, 1997
  4. Kihara N, Hara N, Endo T, J. Org. Chem., 58, 6198, 1993
  5. Yano T, Matsui H, Koike T, Ishiguro H, Rujihara H, Yoshihara M, Maeshima T, Chem. Commun., 12, 1129, 1997
  6. Yamaguchi K, Ebitani K, Yoshida T, Yoshida H, Kaneda K, J. Am. Chem. Soc., 121(18), 4526, 1999
  7. Paddock RL, Nguyen ST, J. Am. Chem. Soc., 123(46), 11498, 2001
  8. Shen YM, Duan WL, Shi M, J. Org. Chem., 68, 1559, 2003
  9. Kim HS, Kim JJ, Lee BG, Jung OS, Jang HG, Kang SO, Angew. Chem. Int. Ed. Engl., 39, 4096, 2000
  10. Li FW, Xia CG, Xu LW, Sun W, Chen GX, Chem. Commun., 2042, 2003
  11. Aida T, Inoue S, J. Am. Chem., Soc., 105, 1304, 1983
  12. Sheldon R, Chem. Commun., 2399, 2001
  13. Zhao DB, Wu M, Kou Y, Min E, Catal. Today, 74(1-2), 157, 2002
  14. Wasserscheid P, Keim W, Angew. Chem. Int. Ed., 39, 3772, 2000
  15. Dupont J, de Souza RF, Suarez PAZ, Chem. Rev., 102(10), 3667, 2002
  16. Marsh KN, Deev A, Wu ACT, Tran E, Klamt A, Korean J. Chem. Eng., 19(3), 357, 2002
  17. Song CE, Shim WH, Roh EJ, Choi JH, Chem. Commun., 1695, 2000
  18. Mun NY, Kim KH, Park DW, Choe Y, Kim I, Korean J. Chem. Eng., 22(4), 556, 2005
  19. Lee EH, Cha SW, Dharma MM, Choe Y, Ahn JY, Park DW, Korean J. Chem. Eng., 24(3), 547, 2007
  20. Manju MD, Ahn JY, Lee MK, Shim HL, Kim KH, Kim I, Park DW, Green Chem., 10, 678, 2008
  21. Udayakumar S, Raman V, Shim HL, Park DW, Appl. Catal. A: Gen., 368(1-2), 97, 2009
  22. Udayakumar S, Lee MK, Shim HL, Park DW, Appl. Catal. A: Gen., 365(1), 88, 2009
  23. Shim HL, Udayakumar S, Yu JI, Park DW, Catal. Today, 148, 350, 2009
  24. Park DW, Yu BS, Jeong ES, Kim I, Kim MI, Oh KJ, Park SW, Catal. Today, 98(4), 499, 2004
  25. Udayakumar S, Park SW, Park DW, Choi BS, Catal. Commun., 3, 1563, 2008
  26. Park JY, Kim JJ, Moon JY, Park DW, J. Korean Ind. Eng. Chem., 12(4), 382, 2001
  27. Tang J, Tang H, Sun W, Radosz M, Shen Y, J. Polym. Chem., 43, 5477, 2007
  28. Xie Y, Zhang Z, He J, Han B, Wu T, Ding K, Angew. Chem. Int pEd., 46, 7255, 2007
  29. Sun J, Cheng W, Fan W, Wang Y, Meng Z, Zhang S, Catal. Today, 148, 361, 2009