Issue
Korean Chemical Engineering Research,
Vol.48, No.5, 615-620, 2010
4,4'-Bis(3-hydroxypropoxy)Biphenyl와 Diisocyanate에 의한 열방성 액정폴리우레탄 합성
Thermotropic Polyurethanes Prepared from Diisocyanates and 4,4'-Bis(3-hydroxypropoxy)Biphenyl Containing Mesogenic Unit
본 실험은 다섯 종류의 새로운 형태의 액정성 폴리우레탄을 4,4'-Bis(3-hydroxypropoxy)biphenyl (BP3)와 2,6-tolylene diisocyanate(2,6-TDI), 2,5-tolylene diisocyanate(2,5-TDI), 2,4-tolylene diisocyanate(2,4-TDI), 1,4-phenylene diisocyanate (1,4-PDI) 및 hexamethylene diisocyanate(HDI)의 중부가 반응에 의해 합성하였다. 단량체 BP3은 스멕틱상을 형성하였으며 HDI/BP3을 제외한 나머지 폴리우레탄에서는 모두 단방성 액정성을 나타내었다. 그러나 메틸 치환기를 가지고 있지 않는 1,4-PDI/BP3에서는 DSC 및 편광현미경에서도 액정상을 전혀 관찰할 수 없었다. 합성된 화합물의 구조는 FTIR 및 1H-NMR에 의해 확인하였으며, 그들의 열적 상전이온도 및 안정성들은 DSC, 편광현미경 및 x-선 회절에 의해 조사하였다.
In this study, five series of novel polyurethanes was synthesized by the polyaddition reaction of diisocyanates such as 2,6-tolylene diisocyanate(2,6-TDI), 2,5-tolylene diisocyanate(2,5-TDI), 2,4-tolylene diisocyanate(2,4-TDI), and 1,4-phenylene diisocyanate(1,4-PDI), hexamethylene diisocyanate(HDI) with 4,4'-Bis(3-hydroxypropoxy)biphenyl (BP3), 4,4'-bis(3-hydroxypropoxy)biphenyl exhibited a smectic type mesophase. Monotropic mesophase was found for all synthesized liquid crystalline polyurethanes except HDI/BP3. In contrast, 1,4-PDI/BP3 without a methyl substituent in the phenylene unit exhibited no explicit mesomorphic behavior, which was confirmed by DSC and polarizing microscopy experiments. Structures of the compound were identified by FT-IR and 1H-NMR spectroscopies. Their phase transition temperatures and thermal stability were also investigated by differential scanning calorimetry(DSC), polarized optical microscopy(POM) and x-ray diffraction analysis.
[References]
  1. Collings PJ, “Liquid crystals, Princeton University Press,” pp. 3-23, 1990
  2. Collings PJ, Hird M, “Introduction to Liquid crystals, Taylor & Francis Ltd,” pp. 3-23, 1997
  3. Jin JI, Antoun S, Ober C, Lenz RW, Polym. J., 12, 132, 1980
  4. Uryu T, Kato T, Macromolecules, 21, 378, 1988
  5. Sun SJ, Cheng HP, Chang TC, Chang CH, Eur. Polym. J., 31, 825, 1995
  6. Lee HS, Jung WH, Kim WN, Hyun JC, Polym(Korea), 29, 813, 1996
  7. Penczek PKC, Szczepaniak FB, Rudnik E, J. Polym. Sci., Part A: Polym. Chem., 31, 1211, 1993
  8. Kricheldorf HR, Awe J, Makromol. Chem., 190, 2579, 1989
  9. Iimura KN, Koide H, Takeda M, Makrmol. Chem., 182, 2569, 1981
  10. Tanaka M, Nakaya T, Makromol. Chem., 187, 2345, 1986
  11. Stenhouse PJ, Valles EM, Kantor SW, MacKnight WJ, Macromolecules, 22, 1467, 1989
  12. Lee JB, Kato T, Yoshida T, Uryu T, Macromolecules, 26, 4989, 1993
  13. Lee JB, Kato T, Ujiie S, Iimura K, Uryu T, Macromolecules, 28(7), 2165, 1995
  14. Lee JB, Kato T, Uryu T, Polymer. J., 27, 664, 1995
  15. Lee DJ, Lee JB, Koide N, Akiyama E, Uryu T, Macromolecules, 31(4), 975, 1998
  16. Lee JB, Song JC, J. Ind. Eng. Chem., 4(2), 140, 1998
  17. Jeong HM, Lee JB, Lee SY, Kim BK, J. Mater. Sci., 35(2), 279, 2000
  18. Lee JB, J. Ind. Eng. Chem., 6(5), 338, 2000
  19. Lee JB, J. Korean Ind. Eng. Chem., 12(6), 649, 2001
  20. Lee JB, Lee KH, Kang BC, Lee DJ, Elasto. and Comp., 44, 329, 2009
  21. Lee JB, Kang BC, Lee GC, Lee DJ, Elasto. and Comp., 44, 416, 2009