Issue
Korean Chemical Engineering Research,
Vol.48, No.5, 583-588, 2010
실리카겔에 고정화된 산성 이온성 액체 촉매를 이용한 올레산의 에스터화 반응연구
The Esterification of Oleic Acid Using Acidic Ionic Liquid Catalysts Immobilized on Silica Gel
유리지방산 함량이 높은 원료의 효율적인 바이오디젤 생산을 위해 다양한 고체산 촉매를 사용하여 회분식 반응기에서 유리지방산의 에스터화 반응에 대한 연구를 수행하였다. 고체산 촉매는 상용 촉매인 황산기를 지닌 이온교환수지(Amberlyst-15, Dowex 50Wx8)와 실리카겔에 술폰기 및 염화술폰기 지닌 산성 이온성 액체가 고정화된 촉매(SiO2-[ASBI][HSO4], SiO2-[ASCBI][HSO4]), 단순히 실리카겔에 술폰기 및 염화술폰기의 산성적 기능기를 도입한 촉매들을 사용하여 반응특성을 비교하였다. 또한 에스터화 반응 실험변수로써 반응시간, 온도, 반응물간의 몰 비율(메탄올:올레산), 촉매량에 대한 영향을 조사하였다. 사용된 고체산 촉매들 중 실리카겔에 고정화된 알릴이미다졸리움을 포함한 산성 이온성 액체 촉매가 가장 우수한 반응성을 나타내었다. 특히 실리카겔에 3-allyl-1-(4-sulfobutyl)imidazolium hydrogen sulfate가 고정화된 SiO2-[ASBI][HSO4] 촉매가 같은 반응조건에서 기존의 알려진 Amberlyst-15보다 더 나은 성능을 보였으며, 353 K 반응온도와 5 wt%의 촉매량, 메탄올/올레산의 몰 비율 20의 조건에서 2시간 동안 약96%의 높은 전환율을 나타내었다. SiO2-[ASBI][HSO4]의 높은 촉매 활성은 실리카에 고정화된 강한 브뢴스테드산의 작용기에 기인한 것으로 생각된다. 바이오디젤로부터 촉매의 분리 및 회수는 간단한 경사법 혹은 여과법에 의해 쉽게 분리할 수 있고, 이를 회수하여 재사용이 가능하다.
Esterification of free fatty acid with methanol to biodiesel was investigated in a batch reactor using various solid acid catalysts, such as polymer cation-exchanged resins with sulfuric acid functional group(Amberlyst-15, Dowex 50Wx8), acidic ionic liquids (ILs)-modified silica gels respectively with -SO3H and -SO2Cl functional group (SiO2-[ASBI][HSO4], SiO2-[ASCBI][HSO4]) and grafted silica gels respectively with -SO3H and -SO2Cl functional group (SiO2-R-SO3H, SiO2-R-SO2Cl). The effects of reaction time, temperature, reactant concentration(molar ratio of methanol to oleic acid), and catalyst amount were studied. Allylimidazolium-based ILs on modified silica gels were superior to other tested solid acid catalysts. Especially, the performance of SiO2-[ASBI][HSO4] (immobilized by grafting of 3-allyl-1-(4-sulfobutyl)imidazolium hydrogen sulfate on silica gel) was better than that of a widely known Amberlyst-15 catalyst at the same reaction conditions. A high conversion yield of 96% was achieved in the esterification reaction of the simulated cooking oil at 353 K for 2 h. The high catalytic activity of SiO2-[ASBI][HSO4] was attributed to the presence of strong Brønsted acid sites from the immobilized functional groups. The catalyst was recovered and the biodiesel product was separated by simple processes such as decantation and filtration.
[References]
  1. Park JI, Woo HC, Lee JH, Korean Chem. Eng. Res., 46(5), 833, 2008
  2. Hong YK, Hong WH, Korean Chem. Eng. Res., 45(5), 424, 2007
  3. Ma FR, Hanna MA, Bioresour. Technol., 70(1), 1, 1999
  4. Koh TS, Chung KH, J. Korean Ind. Eng. Chem., 19(2), 214, 2008
  5. Nalan O, Nuray ON, Alper T, Fuel, 87, 1789, 2008
  6. Berchmans HJ, Hirata S, Bioresour. Technol., 99(6), 1716, 2008
  7. Melero JA, Iglesias J, Morales G, Green Chem., 11, 1285, 2009
  8. Lee JS, Park SC, Korean Chem. Eng. Res., 48(1), 10, 2010
  9. Lee H, Lee JS, Ahn BS, Kim HS, J. Korean Ind. Eng. Chem., 16(5), 595, 2005
  10. Sheldon R, Chem. Commun., 2399, 2001
  11. Gordon CM, Appl. Catal. A: Gen., 222(1-2), 101, 2001
  12. Shim HL, Lee MK, Yu JI, Park DW, Clean Technol., 14(3), 166, 2008
  13. Hubert VM, Emmanuelle S, Paulo DCC, Friedrich HW, EP Patent No. 1, 230, 023, 2001
  14. Qiao K, Hagiwara H, Yokoyama C, J. Mol. Catal. A-Chem., 246(1-2), 65, 2006
  15. Karimi B, Khalkhali M, J. Mol. Catal. A-Chem., 232(1-2), 113, 2005
  16. KS H 356, “Essential Oils-Preparation of Test Samples,” KATS, 2008
  17. KS H 1242, “Essential Oils-Determination of Acid Value,” KATS, 2008
  18. Wu Q, Chen H, Han MH, Wang DZ, Wang JF, Ind. Eng. Chem. Res., 46(24), 7955, 2007
  19. Furuta S, Matsuhashi H, Arata K, Catal. Commun., 5, 721, 2004
  20. Di Serio M, Tesser R, Dimiccoli M, Cammarota F, Nastasi M, Santacesaria E, J. Mol. Catal. A-Chem., 239(1-2), 111, 2005
  21. Choi JD, Kim DK, Park JY, Rhee YW, Lee JS, Korean Chem. Eng. Res., 46(1), 194, 2008
  22. Kim DK, Choi JD, Park JY, Lee JS, Park SB, Park SC, Korean Chem. Eng. Res., 47(6), 762, 2009