Issue
Korean Chemical Engineering Research,
Vol.48, No.5, 574-582, 2010
기상확산 자기조립화법에 QCM수식과 Madelic Acid 키랄물질 측정
Quartz Crystal Microbalance Modified by a Novel Vapor Diffused Molecular Assembly Technique and Measurement of Chiral Mandelic Acid
본 연구는 기상확산 자기조립화기법으로 수정진동자 표면을 L-Penicillamine와 D-Penicillamine으로 수식하여 대표적인 키랄물질인 R-(-)-Mandelic acid와 S-(+)-Mandelic acid에 대한 키랄물질 인식과 측정 가능성을 검토한 것이다. 수정진동자의 전극 표면에 3차원 입체구조가 다른 Penicillamine의 이성질체를 기상확산법으로 수식한 결과를 QCM과 AFM을 이용하여 관찰하여, 수정진동자 표면위의 분자구조의 형성에서 상이한 구조를 가지게 된다는 것을 확인하였다. L, D-Penicillamine이 수식된 수정진동자를 이용하여 R-(-)-Mandelic acid와 S-(+)- Mandelic acid에 대한 감응성을 검토한 결과, L-Penicillamine이 수식된 수정진동자는 R-(-)-Mandelic acid와 S-(+)- Mandelic acid에 대하여 선택적 감응성이 없었으나 D-Penicillamine이 수식된 수정진동자는 R-(-)-Mandelic acid에 대하여 선택적 감응성을 나타냄을 알 수 있었다. 본 연구결과, 기상확산법을 이용하여 다양한 선택성 막의 배열이 가능함을 알 수 있었고, 이렇게 배열된 박막으로 수식된 QCM을 이용하여 Mandelic Acid 이성질체 혼합물에서 특정 광학 이성질체의 검출이 가능함을 확인할 수 있었다.
In this study, the possibility of a quartz crystal micro-balance(QCM) modification of crystallization of LPenicillamine and D-Penicillamine with a Vapor Diffused Molecular Assembly Technique and its application to the R-(-)-Mandelic acid and S-(+)- Mandelic acid measurement was investigated. The 3-dimensional structures of L-Penicillamine and D-Penicillamine on the surface of QCM were verified to be different from each other through QCM and AFM analyses. The D-Penicillamine modified QCM had specific recognition to the R-(-)-Mandelic acid, but L-Penicillamine modified QCM had no specificity to the R-(-)-Mandelic acid and S-(+)- Mandelic acid. From these results, it was known that the QCM could be modified with various selective meterials via VDMA, and the chiral isomer such as a Mandelic acid isomer could be detected by using a modified QCM.
[References]
  1. Smith DPE, Bryant A, Quate CF, Rabe JP, Gerber C, Swalen JD, Proc. Natl. Acad. Sci. USA, 84, 969, 1987
  2. Takeoka Y, Sasada K, Nishiwaki Y, Rikukawa M, Sanui K, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 257, 485, 2005
  3. Lawrence DS, Miller WT, J. Biol. Chem., 270, 27022, 1995
  4. Hu H, Aro A, Payton M, Korrick S, Sparrow D, Weiss ST, Rotnitzky A, Journal of the American Medical Association, 275, 1171, 1996
  5. Sasou M, Sugiyama S, Yoshino T, Ohtani T, Langmuir, 19(23), 9845, 2003
  6. Lyubchenko YL, Jacobs BL, Lindsay SM, Stasiak A, Scanning Microscopy, 9, 705, 1995
  7. Michalet X, Ekong R, Fougerousse F, Rousseaux S, Schurra C, Hornigold N, Vanslegtenhorst M, Wolfe J, Povey S, Beckmann JS, Bensimon A, Science, 277(5331), 1518, 1997
  8. Kim WS, Kim SJ, Park JJ, Chang SM, Kim JM, J. Phys. Chem. Solids., 69, 1422, 2008
  9. Decher G, Science, 277(5330), 1232, 1997
  10. Serizawa T, Goto H, Kishida A, Endo T, Akashi M, J. Polym. Sci. A: Polym. Chem., 37(6), 801, 1999
  11. Serizawa T, Kamimura S, Kawanishi N, Akashi M, Langmuir, 18(22), 8381, 2002
  12. Drucker L, Uziel O, Tohami T, Shapiro H, Radnay J, Yarkoni S, Labav M, Lishner M, Molecular Pharmacology, 64, 415, 2003
  13. Webster WS, Brown-Woodman PD, Ritchie HE, International Journal of Developmental Biology, 41, 329, 1997
  14. Matsunaga H, Haginaka J, Journal of Cromatography A, 1106, 124, 2006
  15. Izake EL, J. Pharm. Sci., 96, 1659, 2007
  16. Gao F, Ruan WJ, Chen JM, Zhang YH, Zhu ZA, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 62, 886, 2005
  17. Rizvi SA, Shamsi SA, Analytical Chemistry, 78, 7061, 2006
  18. Sauerbrey GZ, Zeitscrift fuer Physic., 155, 206, 1959
  19. Kanazawa KK, Gordon JG, Anal Chim. Acta, 175, 99, 1985
  20. Kim JM, Chang SM, Muramatsu H, Appl. Phys. Lett., 74, 466, 1999
  21. Kim JM, Chang SM, Muramatsu H, J. Electrochem. Soc., 146(12), 4544, 1999
  22. Kim JM, Chang SM, Muramatsu H, Polymer, 40(12), 3291, 1999
  23. Landau LD, Lifshitz EM, Fluid Mechanics, Pentagon, Oxford, England, 1959