Issue
Korean Chemical Engineering Research,
Vol.48, No.4, 511-514, 2010
질화갈륨계 고전자이동도 트랜지스터에 대한 불소계 고분자 보호막의 영향
Influence of Perfluorinated Polymer Passivation on AlGaN/GaN High-electron-mobility Transistors
불소계 고분자 물질인 Cytop(TM) 박막을 간단하고 경제적인 스핀코팅 방법을 이용하여 반도체 표면에 선택적으로 형성시킨 후, AlGaN/GaN HEMT 소자의 반도체 보호막(passivation layer)으로써 활용가능성을 고찰하기 위하여 전기적 특성이 분석되었다. Cytop(TM) 보호막이 적용된 AlGaN/GaN HEMT 소자와 적용되지 않은 소자의 게이트 래그 특성이 비교되었다. 보호막이 적용된 소자는 dc 대비 65%의 향상된 펄스 드레인 전류를 보였다. HEMT 소자의 rf 특성이 측정되었으며, Cytop(TM) 박막이 적용된 소자는 PECVE Si3N4 보호막이 적용된 소자와 유사한 소자 특성을 나타냈다. 이는 게이트와 드레인 사이에 존재하는 표면상태 트랩의 보호막에 의한 감소에 의한 것으로 판단된다.
Perfluorinated polymer(Cytop(TM)) was deposited on selective area of AlGaN/GaN HEMT structure using low cost and simple spin-coating method, and the electrical characteristics of the device was analyzed for application of passivation layer on semiconductors. Gate lag measurement results of Cytop(TM) passivated and unpassivated HEMT were compared. Passivated device shows improved 65 % pulsed drain current of dc mode value. Rf measurements were also performed. Cytop(TM) passivated HEMT have similar rf performance to PECVD grown Si3N4 passivated device. Cytop(TM) passivation layer may play an important role in mitigating surface state trapping in the region between gate and drain.
[References]
  1. Wu YF, Kapolnek D, Ibbetson JP, Parikh P, Keller BP, Mishra UK, IEEE Trans. Electron Devices., 48, 586, 2001
  2. Nguyen C, Micovic M, IEEE Trans. Electron Devices., 48, 472, 2001
  3. Morkoc H, Cingolani R, Gil B, Solid-State Electron., 43, 1909, 1999
  4. Huang JC, Hsu HT, Chang EY, Lu CY, Chang CT, Kuo FY, Chen YC, Hsu TH, JJAP., 49, 014103, 2010
  5. Hasegawa H, Akazawa M, J. Vac. Sci. Technol., B27, 2048, 2009
  6. Liu ZH, Ng GI, Arulkumaran S, IEEE Elctron Device Lett., 30, 1122, 2009
  7. Fatima TH, Hu X, Zhang JP, Simin G, Khan MA, Shur MS, Gaska R, IEEE Electron Device Lett., 24, 369, 2003
  8. Simin G, Koudymov A, Fatima H, Zhang J, Yang J, Khan MA, Hu X, Tarakji A, Gaska R, Shur MS, IEEE Electron Device Lett., 23, 458, 2002
  9. Rajan S, Xing H, Jena D, DenBaars SP, Mishra UK, Appl. Phys. Lett., 84, 1591, 2004
  10. Hu X, Koudymov A, Simin G, Yang J, Khan MA, Tarakji A, Shur MS, Gaska R, Appl. Phys. Lett., 79, 2832, 2001
  11. Binari SC, Ikossi K, Roussos JA, Kruppa W, Park D, Dietrich HB, Koleske DD, Wickenden AE, Henry RL, IEEE Trans. Electron Devices., 48, 465, 2001
  12. Vetury R, Zhang NQ, Keller S, Mishra UK, IEEE Elctron Device Lett., ED-48, 560, 2001
  13. Kordos P, Bernat J, Marso M, Luth H, Rampazzo F, Tamiazzo G, Pierobon R, Meneghesso G, Appl. Phys. Lett., 86, 253511, 2005
  14. Weimann NG, Manfra MJ, Wachtler T, IEEE Electron Device Lett., 24, 57, 2003
  15. Shen L, Coffie R, Buttari D, Heikman S, Chakraborty A, Chini A, Keller S, DenBaars SP, Mishra UK, IEEE Electron Device Lett., 25, 79, 2004
  16. Shen L, Coffie R, Buttari D, Heikman S, Chakraborty A, Chini A, Keller S, DenBaars SP, Mishra UK, J. Electron. Mater., 33, 422, 2004
  17. Chu R, Zhou Y, Liu J, Wang D, Chen KJ, Lau KM, IEEE Trans. Electron Devices., 42, 438, 2005
  18. Granstrom J, Swensen JS, Moon JS, Rowell G, Yuen J, Heeger AJ, Appl. Phys. Lett., 93, 193304, 2008
  19. Green BM, Chu KK, Chumbes EM, Smart JA, Shealy JR, Eastman LF, IEEE Electron Device Lett., 21, 268, 2000
  20. Binari SC, Ikossi-Anastasiou K, Kruppa W, Dietrich HB, Kelner G, Henry RL, Koleske DD, Wickenden AE, Mater. Res. Soc. Symp. Proc., 572, 541, 1999