Issue
Korean Chemical Engineering Research,
Vol.48, No.4, 506-510, 2010
Nb2O5 코팅에 따른 염료감응 태양전지의 효율 향상
Enhancement of Conversion Efficiency of Dye-Sensitized Solar Cells(DSSCs) by Nb2O5 Coating on TiO2 Electrode
염료감응 태양전지에서 TiO2의 표면에서 일어나는 전자의 재결합 현상은 태양전지의 변환효율을 떨어뜨리는 주요한 원인이다. 본 연구에서는 이 전자의 재결합 현상을 제어하기 위해 TiO2의 표면에 에너지 장벽을 도입하여 변환효율을 향상시키고자 하였다. TiO2 나노전극에 에너지 장벽의 역할을 하는 Nb2O5를 코팅시켰다. 코팅의 영향을 알아보기 위해 코팅횟수를 변화시키며 실험하였다. 가시광선 영역에서의 반사율로부터 코팅의 유무를 확인하고 회절패턴으로부터 코팅물질이 Nb2O5임을 확인하였다. 재결합을 제어할 수 있는 코팅막의 두께를 측정해 본 결과, 12회 코팅하였을 때 코팅막의 두께는 약 5 nm로 1회 코팅시 적층되는 코팅막의 두께는 약 0.417 nm로 볼 수 있었다. 코팅횟수에 따른 변환효율의 변화는 코팅막이 없는 경우 2.55%에서 2회 코팅한 경우 4.25%로 약 1.7배 증가하여 2회 코팅의 경우 효율이 가장 높았다. 따라서 Nb2O5 2회 코팅의 경우 코팅막의 두께가 약 0.834 nm로 전자의 재결합을 가장 잘 제어할 수 있었다.
Electron recombinations in electrolyte solution reduce light-to-energy conversion efficiency at the nanoporous electrode surface of dye sensitized solar cells. In this study, we improved the conversion efficiency using an energy barrier at the nanoporous electrode surface to control the recombination process. The energy barrier was formed by coating nanoporous TiO2 electrode with Nb2O5 material. We investigated the influence of energy barrier on the cell efficiency depending on the coating thickness. Nanoporous TiO2 electrode was coated about 5 nm thickness by 12 times coatings, and so the coating layer was grown about 0.417 nm for every time. Enhancement of conversion efficiency from 2.55% to 4.25% was achieved at 0.834 nm coating thickness, and it was believed as the optimum thickness for minimizing the electron recombination process in our experimental system.
[References]
  1. Graetzel M, Prog. Photovolt. Res. Appl., 8, 171, 2000
  2. Na Y, Song S, Park Y, Korean J. Chem. Eng., 22(2), 196, 2005
  3. Lee YG, Lee TG, Kim WS, Korean Chem. Eng. Res., 43(1), 170, 2005
  4. Kwon TR, Roo WH, Lee CW, Lee WM, Korean Chem. Eng. Res., 43(1), 1, 2005
  5. Kim GS, Kim YS, Kim HI, Seo HK, Yang OB, Shin HS, Korean Chem. Eng. Res., 44(2), 179, 2006
  6. Gregg BA, Pichot F, Ferrere S, Fields CL, J. Phys. Chem. B, 105(7), 1422, 2001
  7. Bedja I, Kamat PV, J. Phys. Chem., 99(22), 9182, 1995
  8. Tada H, Hattori A, Tokihisa Y, Imai K, Tohge N, Ito S, J. Phys. Chem. B, 10, 4585, 2000
  9. Chappel S, Chen SG, Zaban A, Langmuir, 18(8), 3336, 2002
  10. Diamant Y, Chappel S, Chen SG, Melamed O, Zaban A, Coord. Che. Rev., 248, 1271, 2004
  11. Sayama K, Sugihara H, Arakawa H, Chem. Mater., 10, 3825, 1998
  12. Chen SG, Chappel S, Diamant Y, Zaban A, Chem. Master., 13, 4629, 2001