Issue
Korean Chemical Engineering Research,
Vol.48, No.4, 499-505, 2010
두 개의 기포유동층으로 구성된 연속장치에서 CO2 회수를 위한 K-계열 고체흡수제의 수력학적 특성 및 반응특성
Study of Hydrodynamics and Reaction Characteristics of K-based Solid Sorbents for CO2 Capture in a Continuous System Composed of Two Bubbling Fluidized-bed Reactors
본 연구에서는 두 개의 기포유동층으로 구성된 연속장치(높이: 1.2 m, 내경: 0.11 m)를 이용하여 실험장치의 최소유동화속도와 고체순환량을 측정하여 수력학적 특성을 파악하고 흡수-재생 조업변수에 의한 반응특성을 알아보았다. 사용된 K-계열 건식흡수제는 한국전력연구원으로부터 공급되었고 CO2 흡수를 위한 35%의 탄산칼륨과 기계적 강도를 위한 65%의 지지체로 구성되어 있다. 연속 장치는 두 개의 기포유동층 반응기, 수송관, 상승관, 냉각장치, 분석기, 히터 등으로 구성되어 있다. 이 장치의 최소유동화속도는 0.0088 m/s이고 수송관의 유속이 1.05 m/s일 때 고체순환량은 10.3 kg/m2-s로 측정되었다. 모사가스를 이용하여 실험을 수행하였고 흡수반응기 입구 CO2 농도(Dry basis)는 약 10 vol%였고, 온도는 흡수반응온도 70 ℃, 재생반응온도 200 oC에서 각각 일정하게 유지하였다. 반응기의 차압은 흡수반응기 415 mmH2O, 재생반응기 350 mmH2O에서 안정적으로 유지하였다. 실험은 조업변수들인 H2O 주입농도(7.28~19.66%), 모사가스 유속(0.053~0.103 m/s), 흡수반응온도(60~80 ℃), 생반응온도(150~200 ℃), 고체순환량(7.0~10.3 kg/m2-s)의 변화에 따라 반응실험이 실시되었다. 각 변수실험은 정상상태 도달 후 1시간 정도 유지한 후 결과를 저장, 분석하였다. 실험결과 수증기 주입량, 재생반응온도, 고체순환량이 증가할수록 제거율은 증가하였고 흡수반응온도, 유속이 증가함에 따라 제거율은 감소하였다.
In this study, hydrodynamics and reaction characteristic of K-based solid sorbents for CO2 capture were investigated using a continuous system composed of two bubbling fluidized-bed reactors(1.2 m tall bed with 0.11 m i.d.). Potassium-based dry sorbents manufactured by the Korea Electric Power Research Institute were used, which were composed of K2CO3 of 35% for CO2 absorption and supporters of 65% for mechanical strength. The continuous system consists of two bubbling fluidized-bed reactors, solid injection nozzle, riser, chiller, analyzer and heater for regeneration reaction. The minimum fluidizing velocity of the continuous system was 0.0088 m/s and the solid circulation rate measured was 10.3 kg/m2-s at 1.05 m/s velocity of the solid injection nozzle. The CO2 concentration of the simulated gas was about 10 vol% in dry basis. Reaction temperature in carbonator and regenerator were maintained about 70 ℃ and 200 ℃, respectively. Differential pressures, which were maintained in carbonator and regenerator, were about 415 mmH2O and 350 mmH2O, respectively. In order to find out reaction characteristics of dry sorbents, several experiments were performed according to various experimental conditions such as H2O content(7.28~19.66%) in feed gas, velocity (0.053~0.103 m/s) of simulated gas, temperature(60~80 ℃) of a carbonator, temperature(150~200 ℃) of a regenerator and solid circulation rate(7.0~10.3 kg/m2-s). The respective data of operating variables were saved and analyzed after maintaining one hour in a stable manner. As a result of continuous operation, CO2 removal tended to increase by increasing H2O content in feed gas, temperature of a regenerator and solid circulation rate and to decrease by increasing temperature of a carbonator and gas velocity in a carbonator.
[References]
  1. Lee JB, Korean Ind. Chem. News, 12(1), 50, 2009
  2. Eum HM, Kim SC, Korean Ind. Chem. News, 12(1), 43, 2009
  3. Park JH, Baek IH, Korean Ind. Chem. News, 12(1), 3, 2009
  4. Yi CK, Korean Ind. Chem. News, 12(1), 30, 2009
  5. Hoffman JS, Pennline HW, “Investgation of CO2 Capture Using Regenerable Sorbents,” The Proceedings of 17th Annual International Pittsburgh Coal Conference, 2000
  6. Metz B, Davidson O, de Coninck H, Loos M, Meyer L, “IPCC Special Report on Carbon Dioxide Capture and Storage,” Cambridge University Press, New York, 2005
  7. Yi CK, Hong SW, Jo SH, Son JE, Choi JH, Korean Chem. Eng. Res., 43(2), 294, 2005
  8. Liang Y, Harrison DP, Gupta RP, Green DA, McMichael WJ, Energy Fuels, 18(2), 569, 2004
  9. Park YC, Jo SH, Ryu CK, Yi CK, Energy Procedia, 1235, 2009
  10. Yi CK, Jo SH, Seo YW, Park SD, Moon KH, Yoo JS, Lee JB, Ryu CK, Proceedings of the 4th Annual Conference on Carbon Capture and Sequestration, DOE/NETL, 2005
  11. Yi CK, Jo SH, Ryu HJ, You YW, Hong SW, Kim MS, Lee SY, Shun DW, Theor. Appl. Chem. Eng., 9, 2569, 2003
  12. Yi CK, Jo SH, Seo YW, Lee JB, Ryu CK, International Journal of Greenhouse Gas Control, 1, 31, 2007
  13. Ryu HJ, Lee SY, Park YC, Park MH, International Journal of Applied Science, Engineering and Technology, 4, 113, 2008
  14. Ryu HJ, Jang MS, Kim HK, Lee DK, Korean Chem. Eng. Res., 47(3), 337, 2009
  15. Ryu HJ, Park YC, Jo SH, Park MH, Korean J. Chem. Eng., 25(5), 1178, 2008
  16. Ryu HJ, Park J, Kim HK, Park MH, Korean Chem. Eng. Res., 46, 1057, 2009
  17. Ryu HJ, Lim NY, Bae DH, Jin GT, HWAHAK KONGHAK, 41(5), 624, 2003
  18. Park YC, Kim KC, Lee SY, Jo SH, Yi CK, Ascon, Japan, 2008
  19. Ryu CK, Lee JB, Eom TH, Oh JM, Yi CK, Proceedings of the 4th Annual Conference on Carbon Capture and Sequestration, DOE/NETL, 2005
  20. Kunii D, Levenspiel O, “Fluidization Engineering, 2nd ed.,” Butterworth-Heinemann, Boston, 1991
  21. Park KW, Park YS, Park YC, Jo SH, Yi CK, Korean Chem. Eng. Res., 47(3), 349, 2009
  22. Seo Y, Moon YS, Jo SH, Ryu CK, Yi CK, Korean Chem. Eng. Res., 43(4), 537, 2005
  23. Hayashi H, Taniuchi J, Furuyashiki N, Sugiyama S, Hirano S, Shigemoto N, Nonaka T, Ind. Eng. Chem. Res., 37(1), 185, 1998
  24. Lee SC, Choi BY, Lee TJ, Ryu CK, Soo YS, Kim JC, Catal. Today, 111(3-4), 385, 2006