Issue
Korean Chemical Engineering Research,
Vol.48, No.2, 244-252, 2010
Triple-bed Adsorbent Tube를 이용한 가스상 극미량 복합 악취 및 휘발성 유기화합물의 동시 분석
Simultaneous Analyses for Trace Multi-Odorous and Volatile Organic Compounds in Gas using a Triple-bed Adsorbent Tube
본 연구에서는 Triple-bed 흡착튜브를 제작하여 열탈착장치와 GC-MS로써 다성분 복합 악취성물질 및 휘발성유기 화합물을 동시분석 가능성을 평가하고자 하였다. Triple-bed 흡착튜브는 하나의 튜브에 Tenax-TA와 소량의 Carbopack B 및 Carbosieve SIII 흡착제를 흡착강도 순으로 3단 배열된 것이다. GC-MS의 분석조건은 mass range 20~350 m/z, 불순물 1 ppm 이하의 헬륨을 운반가스로 하여 저비점 저분자량 물질의 분리동정에 효과적일 수 있도록 하고, 목적이온 추출을 통하여 정량하였다. 그 결과 ppbv 수준의 C1~C5의 알콜(4), 알데히드(6), 케톤(2) 그리고 황화합물(2)을 포함한 14종의 물질 모두 99%이상의 회수율과 양호한 재현성 및 직진성으로 동시분석이 가능하였다. 비교적 휘발성이 강하고 분자량이 낮은 물질인 메틸알콜, 아세트알데히드는 상대습도 45% 이하, 흡착유속 50 mL/min, 흡착량 2 L 이하에서 높은 회수율로 보다 안정적으로 정량분석이 가능하였다. 또한 목적이온 추출은 물질피크가 겹쳐 나타난 경우에도 다 성분 물질을 각각 정량 가능하였다.
The objective of this study is to assess feasibility of simultaneous analysis for trace multi-components odorous and volatile organic compounds using a Triple-bed adsorbent tube with a thermal desorber and GC-MS. Triplebed adsorbent tube is 3 bed packed Tenax-TA with small amount of Carbopack B and Carbosieve SIII in order of adsorption strength in a tube. The operating conditions of GC-MS was possibly able to and effectively detect high volatile and low molecular weight compounds at the mass range of 20~350 m/z using a below impurity 1ppm of Helium carrier gas, of which quantitatively analyzed by target ion extracts. According to the experiment, C1~C5 of 14 components; sulfur containing compounds(2), ketones(2), alcohols(4) and aldehydes(6) were simultaneously analyzed with recoveries of 99%, and good repeatability and linearity. High volatile and low molecular weight compounds such as methyl alcohol and acetaldehyde can be safely quantified with high recovery at a condition of 50mL/min of flow rate, below 2L of adsorption volume, and 45% of relative humidity. Target ion extract can also simultaneously quantify multicomponents with odorous and volatile organic compounds in an occasion of piled up two peaks.
[References]
  1. Rappert S, Muller R, Waste Manag., 25, 887, 2005
  2. Mao IF, Tsai CJ, Shen SH, Lin TF, Chen WK, Chen ML, Sci. Total Environ., 2006
  3. US EPA, “Determination of VOCs in Ambient Air Using Active Sampling Into Sorbent Tubes,” Method TO17A 2nd Ed., 1999
  4. US EPA, “Determination of VOCs in Ambent Air Using Specially Prepared Canister with Subsquent Analysis by GC,” Method TO14A 2nd Ed., 1997
  5. Jeon SJ, Kim BJ, Kim JS, Heo GS, Anal. Sci. Technol., 12, 1999
  6. Hallama AR, Rosenber E, Grasserbauer M, J. Chromatogr., 809, 47, 1998
  7. Jeon SJ, Heo GS, J. KSAE, 15, 417, 1999
  8. Evans JC, Huckaby JL, Mitroshkov AV, Julya JL, Hayes JC, Edwards JA, Environ. Sci. Technol., 32, 3410, 1998
  9. Riggin RM, “Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air,” Methods TO-1 and TO-2, US EPA, Research Triangle Park, NC 27711, EPA 600/4-84-041, 1984
  10. Tang YS, Cheng WK, Fellin P, Tran Q, Drummond I, Am. Ind. Hyg. Assoc. J., 57, 245, 1996
  11. Rabaud NE, Ebeler SE, Ashbaugh LL, Flocchini RG, J. Agric. Food Chem., 50, 5139, 2002
  12. Ahn DW, Lim DW, Kim YS, Environm. Anal., 1, 93, 1999
  13. Baek SO, Huh M, Heo GS, Korean J. Odor. Res. Eng., 3, 240, 2004
  14. Daughtrey Jr. EH, Oliver KD, Adams JR, Kronmiller KG, Lonneman WA, McClenny WA, J. Environ. Monit., 3, 166, 2001
  15. Sigman ME, Ma CY, Ilgner RH, Anal. Chem., 73, 792, 2001
  16. Nobou O, Shigeki D, Daniel BC, J. Environ. Monit., 5, 997, 2003
  17. ASTM D 6196-03, “Standard Practice for Selection of Sorbents, Sampling, and Thermal Desorption Analysis Procedures for VolatileOrganic Compounds in Air,” PA, US, 2003
  18. US EPA QA Handbook, “Quality Assurance Handbook for Air Pollution Measurement System,”
  19. Matz G, Schroder W, Ollesch T, Waste Manag., 25, 864, 2005
  20. MDHS 96 “Volatile Organic Compounds in Air(4),” Health and Safety Executive, Sheffield, UK, 2000