Issue
Korean Chemical Engineering Research,
Vol.48, No.2, 147-156, 2010
폐가스 처리용 바이오필터에 미생물 군집 분석 기법의 적용
Application of Methodology for Microbial Community Analysis to Gas-Phase Biofilters
폐가스 처리용 바이오필터의 핵심 요소 기술은 생촉매(미생물), 담체, 설계·운전 기술 및 진단·관리 기술이다. 특히, 바이오필터의 성능은 부하 조건과 바이오필터 내 미생물 군집 구조에 의해 영향을 받는다. 지금까지 바이오필터의 미생물 연구는 대부분 배양법을 기초로 하여 수행되어 왔으나, 최근에 보다 신속하고 정확하게 미생물 군집을 분석할 수 있는 방법들이 제시되고 있다. 본 논문에서는 생리적, 생화학적 및 분자생물학적 미생물 군집 분석 방법과 이를 활용한 바이오필터의 미생물 군집 특성을 조사한 연구사례를 소개하고, 미생물 군집 분석법의 바이오필터에 적용 가능성에 대해 고찰하였다. Community-level physiological profile 방법은 시료 중에 포함된 종속영양미생물의 탄소기질 이용능력을 기반으로 군집 특성을 조사하는 것이며, Phospholipid fatty acid analysis는 미생물 세포막 지방산을 분석하여 군집 특성을 조사하는 방법이다. 환경시료로부터 직접 추출한 DNA를 활용하는 분자생물학적 분석법에는 “partial community DNA analysis”와 “whole community DNA analysis”가 있다. 전자의 방법은 PCR 과정에 의해 증폭시킨 염기서열을 분석하는 것으로 ribosomal operon 유전자가 가장 많이 활용되었다. 이 방법은 다시 PCR fragment cloning 및 genetic fingerprinting으로 구분되며, genetic fingerprinting 방법으로는 denaturing gradient gel electrophoresis, terminalrestriction fragment length polymorphism, ribosomal intergenic spacer analysis 및 random amplified polymorphic DNA 방법으로 세분화된다. 추출된 전체 군집의 DNA를 분석하는 방법에는 total genomic cross-DNA hybridization, 총 추출 DNA의 열 변성/재결합 방법 및 밀도구배를 이용하여 추출한 DNA를 분획화하는 방법 등이 있다.
There are four key factors for gas-phase biofilters; biocatalysts(microorganisms), packing materials, design/operating techniques, and diagnosis/management techniques. Biofilter performance is significantly affected by microbial community structures as well as loading conditions. The microbial studies on biofilters are mostly performed on basis of culture-dependent methods. Recently, advanced methods have been proposed to characterize the microbial community structure in environmental samples. In this study, the physiological, biochemical and molecular methods for profiling microbial communities are reviewed, and their applicability to biofilters is discussed. Community-level physiological profile is based on the utilization capability of carbon substrate by heterotrophic community in environmental samples. Phospholipid fatty acid analysis method is based on the variability of fatty acids present in cell membranes of different microorganisms. Molecular methods using DNA directly extracted from environmental samples can be divided into “partial community DNA analysis” and “whole community DNA analysis” approaches. The former approaches consist in the analysis of PCR-amplified sequence, the genes of ribosomal operon are the most commonly used sequences. These methods include PCR fragment cloning and genetic fingerprinting such as denaturing gradient gel electrophoresis, terminal-restriction fragment length polymorphism, ribosomal intergenic spacer analysis, and random amplified polymorphic DNA. The whole community DNA analysis methods are total genomic cross-DNA hybridization, thermal denaturation and reassociation of whole extracted DNA and extracted whole DNA fractionation using density gradient.
[References]
  1. Grommen R, Verstraete W, J. Biotechnol., 98, 113, 2002
  2. Devinny JS, Deshusses MA, Webster TS, “Biofiltration for Air Pollution Control,” Florida, Lewis Publishers, 1999
  3. Adib F, Bagreev A, Bandosz TJ, J. Colloid Interface Sci., 216(2), 360, 1999
  4. Barona A, Elias A, Arias R, Cano I, Gonzalez R, Biochem. Eng. J., 22, 25, 2004
  5. Vergara-Fernandez A, Molina LL, Pulido NA, Aroca G, J. Environ. Manage., 84, 115, 2007
  6. Yanzekontchou C, Gschwind N, Appl. Environ. Microbiol., 60, 4297, 1994
  7. Mandelbaum RT, Allan DL, Wackett LP, Appl. Environ. Microbiol., 61, 1451, 1995
  8. Radosevich M, Traina SJ, Hao YL, Tuovinen OH, Appl. Environ. Microbiol., 61, 297, 1995
  9. Burgess JE, Parsons SA, Stuetz RM, Biotechnol. Adv., 19, 35, 2001
  10. van Groenestijn JW, Hesselink PGM, Biodegradation, 1, 191, 1993
  11. Wani AH, Branion RMR, Lau AK, J. Environ. Sci. Heal., 32, 2027, 1997
  12. Cho KS, Ryu HW, Lee NY, J. Biosci. Bioeng., 90(1), 25, 2000
  13. Cho KS, Hirai M, Shoda M, J. Ferment. Bioeng., 73, 46, 1992
  14. Chung YC, Huang CP, Tseng CP, Biotechnol. Prog., 13(6), 794, 1997
  15. Kim NJ, Sugano Y, Hirai M, Shoda M, Biotechnol. Lett., 22(16), 1295, 2000
  16. Lee EY, Cho KS, Ryu HW, Kor. J. Odor Res. Eng., 2, 46, 2003
  17. Lee EY, Cho KS, Han HD, Ryu HW, J. Environ. Qual., 31, 1782, 2002
  18. Lee EY, Cho KS, Ryu HW, J. Biosci. Bioeng., 99(6), 611, 2005
  19. Malhautier L, Gracian C, Roux JC, Fanlo JL, Cloirec PL, Chemoshere, 50, 145, 2003
  20. Oyarzun P, Arancibia F, Canales C, Aroca GE, Process Biochem., 39, 165, 2003
  21. Shinabe K, Oketani S, Ochi T, Matsumura M, J. Ferment. Bioeng., 80(6), 592, 1995
  22. Tiwaree RS, Cho KS, Hirai M, Shoda M, Appl. Biochem. Biotechnol., 32, 135, 1992
  23. Wani AH, Richard MRB, Anthony KL, J. Hazard. Mater., 60, 287, 1998
  24. Yani M, Hirai M, Shoda M, J. Ferment. Bioeng., 85(5), 502, 1998
  25. Lee EY, Lee NY, Cho KS, Ryu HW, J. Biosci. Bioeng., 100, 309, 2006
  26. Delhomenie MC, Bibeau L, Bredin N, Roy S, Broussau S, Brzezinski R, Kugelmass JK, Heitz M, Adv. Environ. Res., 6, 239, 2002
  27. Jorio H, Kiared K, Brzezinski R, Leroux A, Viel G, Heitz M, J. Chem. Technol. Biotechnol., 73(3), 183, 1998
  28. Jorio H, Bibeau L, Heitz M, Environ. Sci. Technol., 34, 1764, 2000
  29. Kam SK, Kang KH, Lee MG, J. Microbiol. Biotechnol., 15, 977, 2005
  30. Kim J, Ryu HW, Jung DJ, Lee TH, Cho KS, J. Microbiol. Biotechnol., 15, 1207, 2005
  31. Kwon HH, Lee EY, Cho KS, Ryu HW, J. Microbiol. Biotechnol., 13, 70, 2003
  32. Lee EY, Jun YS, Cho KS, Ryu HW, J. Air Was. Manage. Assoc., 52, 400, 2002
  33. Lu C, Lin MR, Lin WC, J. Air. Was. Manage. Assoc., 50, 411, 2000
  34. Rene ER, Murthy DVS, Swaminathan T, Process Biochem., 40, 2771, 2005
  35. Shim EH, Kim J, Cho KS, Ryu HW, Environ. Sci. Technol., 40, 3089, 2006
  36. Singh RS, Agnihotri SS, Upadhyay SN, Bioresour. Technol., 97(18), 2296, 2006
  37. Zilli M, Del Borghi A, Converti A, Appl. Microbiol. Biotechnol., 54, 248, 2005
  38. Ryu HW, Kim SJ, Cho KS, Lee TH, Biotechnol. Bioprocess Eng., 13, 360, 2008
  39. Lee EH, Cho KS, Chemosphere, 71, 1738, 2008
  40. Cho KS, Yoo SK, Ryu HW, J. Microbiol. Biotechnol., 17, 1976, 2007
  41. Hirai M, Kamamoto M, Yani M, Shoda M, J. Biosci. Bioeng., 91(4), 428, 2001
  42. Maestre JP, Gamisans X, Gabriel D, Lafuente J, Chemosphere, 67, 684, 2007
  43. Lee TH, Kim J, Kim MJ, Ryu HW, Cho KS, Chemosphere, 63, 315, 2006
  44. van Lith C, Leson G, Michelsen R, J. Air Was. Manage. Assoc., 47, 37, 1997
  45. Yang Y, Allen ER, J. Air Waste Manag. Assoc., 44, 863, 1994
  46. Delhomenie MC, Bibeau L, Gendron J, Brzezinski R, Heitz M, Chem. Eng. J., 94(3), 211, 2003
  47. Iliuta I, Larachi F, Chem. Eng. Sci., 59(16), 3293, 2004
  48. Kim D, Sorial GA, Chemosphere, 66, 1758, 2007
  49. Mendoza JA, Prado OJ, Veiga MC, Kennes C, Wat. Res., 38, 404, 2004
  50. Weber FJ, Hartmans S, Appl. Microbiol. Biotechnol., 43(2), 365, 1995
  51. Wright WF, Chem. Eng. J., 113(2-3), 161, 2005
  52. Lee EH, Cho KS, Ryu HW, J. Environ. Biol., 30, 155, 2009
  53. Ranjard L, Poly F, Nazaret S, Res. Microbiol., 151, 167, 2000
  54. Watanabe K, Hamamura N, Curr. Opin. Biotechnol., 14, 289, 2003
  55. Leckie SE, Forest Ecol. Manag., 220, 88, 2005
  56. Garland JL, Mills AL, Appl. Environ. Microbiol., 57, 2351, 1991
  57. Weber KP, Gehder M, Legge RL, Water Res., 42, 180, 2008
  58. Muhammad A, Xu J, Li Z, Wang H, Yao H, Chemosphere, 60, 508, 2005
  59. Preston-Mafham J, Boddy L, Randerson PF, FEMS Microbiol. Ecol., 42, 1, 2002
  60. Bligh EG, Dyer WJ, J. Biochem. Physiol., 37, 911, 1959
  61. White DC, Stair JO, Ringelberg DB, J. Ind. Microbiol., 17, 185, 1996
  62. Hugenholtz P, Goebel BM, Pace NR, J. Bacteriol., 180, 4765, 1998
  63. Smit E, Leeflang P, Wernars K, FEMS Microbiol. Ecol., 23, 249, 1997
  64. Ranjard L, Poly F, Richaume A, Gourbiere F, Nazaret S, “Bacterial Community Structure Assess by two DNA Fingerprint at Microscale Level in Soil,” in Proceeding of the International Congress NATO ASI Molecular Advances in Molecular Ecology, Erice, Italy, 1998
  65. Ranjard L, Nazaretm S, Gourbiere F, Thioulouse J, Linet P, Richaume A, FEMS Microbiol. Ecol., 31, 107, 2000
  66. Wintzingerode F, Gobel UB, Stackebrandt E, Fems Microbiol. Rev., 21, 213, 1997
  67. Vallaeys T, Topp E, Muyzer G, FEMS Microbiol. Ecol., 24, 279, 1997
  68. Felske A, Akkermans ADL, Microbial Ecol., 36, 31, 1998
  69. Muyzer G, De Waal EC, Uitterlinden AG, Appl. Environ. Microbiol., 59, 695, 1993
  70. Borneman J, Triplett EW, Appl. Environ. Microbiol., 63, 2647, 1997
  71. Hadrys H, Balick M, Schierwater B, Mol. Ecol., 1, 55, 1992
  72. Wikstrom P, Andersson AC, Forsman M, FEMS Microbiol. Ecol., 28, 131, 1999
  73. Lee S, Furhman JA, Appl. Environ. Microbiol., 56, 739, 1990
  74. Xia X, Bollinger J, Ogram A, Mol. Ecol., 4, 17, 1995
  75. Torsvik V, Goskøyr J, Daae FL, Appl. Environ. Microbiol., 56, 782, 1990
  76. Holben WE, Harris D, Mol. Ecol., 4, 627, 1995
  77. Rotthauwe JH, Witzel KP, Liesack W, Appl. Environ. Microbiol., 63, 4707, 1997
  78. Auman AJ, Lidstrom ME, Environ. Microbiol., 4, 517, 2002
  79. Smits THM, Rothlisberger M, Witholt B, van Beilen JB, Environ. Microbiol., 1, 307, 1999
  80. Beller HR, Kane SR, Legler TC, Alvarez PJ, Environ. Sci. Technol., 36, 3977, 2002
  81. Grove JA, Kautola H, Javadpour S, Moo-Young M, Anderson WA, Biochem. Eng. J., 18, 111, 2004
  82. Steele JA, Ozis F, Fuhrman JA, Devinny JS, Chem. Eng. J., 113(2-3), 135, 2005
  83. Chung YC, J. Hazard. Mater., 144(1-2), 377, 2007
  84. Ho KL, Chung YC, Lin YH, Tseng CP, J. Hazard. Mater., 152(2), 580, 2008
  85. Ho KL, Chung YC, Tseng CP, Bioresour. Technol., 99(8), 2757, 2008
  86. Ding Y, Wu W, Han Z, Chen Y, Biochem. Eng. J., 38, 248, 2008
  87. Jun Y, Wenfeng X, Bioresour. Technol., 100, 3869, 2009
  88. O-Thong S, Prasertsan P, Birkeland NK, Bioresour. Technol., 100, 909, 2009
  89. Cai Z, Sorial GA, Zhang K, Saikaly P, Zein MM, Oerther DB, Water Air Soil Poll., 8, 311, 2008
  90. Ait-Benichou S, Jugnia LB, Greer CW, Cabral AR, Waste Manage., 29, 2509, 2009