Issue
Korean Chemical Engineering Research,
Vol.48, No.2, 140-146, 2010
건식흡수제 이용 연소배가스 이산화탄소 포집기술
Advances of Post-combustion Carbon Capture Technology by Dry Sorbent
이산화탄소 포집기술 중 건식흡수제를 이용한 연소 후 이산화탄소 포집기술에 대하여 최신기술개발 현황에 대하여 자세히 기술하였다. CO2 포집에 있어서 건식흡수제 이용 기술의 장점으로는 조업온도의 폭이 크고, 에너지손실이 적으며, 폐수발생이 없고, 부식성이 적으며, 고체폐기물의 상대적인 천연성을 들 수 있다. 현재 한국과 미국에서는 건식 흡수제의 성능 개선과 더불어 실제 연소배가스로부터 CO2 포집을 위한 공정 개발을 통해 포집비용을 줄이려는 연구가 지속적으로 이루어지고 있다. 건식흡수제는 가격이 싼 알칼리금속 계열의 화학흡수제, 아민을 실리카 지지체에 고정시킨 흡수제, 아민을 실리카 지지체에 공유결합시킨 흡수제, 기공성의 탄소에 아민의 기능성을 첨가시킨 흡수제, 아민고정 고분자지지체 흡수제, 금속유기구조체등의 연구가 이루어지고 있다. 포집비용을 대폭 줄이기 위하여 소재에 있어서도 혁신적인 성능 개선이 필요한 시점이다.
This paper addresses recent status and trends of carbon dioxide capture technologies using dry sorbents in the flue gas. The advantages of dry sorbent CO2 capture technology are broader operating temperature range, less energy loss, less waste water, less corrosion problem, and natural properties of solid wastes. Recently, U.S.A. and Korea have been developing processes capturing CO2 from real coal flue gas as well as sorbents improving sorption capacity to decrease total CO2 capture cost.. New class of dry sorbents have been developed such as chemisorbents with alkali metals of which material cost is low, amines physically adsorbed on silica supports, amines covalently tethered to the silica support, carbon-supported amines, polymer-supported amines, amine-containing solid organic resins and metal-organic framework. The breakthrough is needed in the materials on dry sorbents to decrease capture cost.
[References]
  1. Intergovernmental Panel on Climate Change “Special Report on Carbon Dioxide Capture and Storage : Summary for Policy Makers", www.ipcc.ca, 2005
  2. White C, Strazisar BR, Granite EV, Koffman JS, Pennline HW, J. Air Waste Manage. Assoc., 53, 645, 2003
  3. Harrison DP, “The Role of Solids in CO2 Capture: a Mini Review,” Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies Vancouver, Canada 1101-1106, 2004
  4. Nelson T, Coleman L, Green D, Gupta R, “The Dry Carbonate Process: Carbon dioxide recovery from power plant flue gas,” 9th Int. Conf. on Greenhouse Gas Control Technology, http://mit.edu/ghgt9/, 2008
  5. Nelson T, Coleman L, Green D, Gupta R, “The Dry Carbonate Process: Carbon Dioxide Recovery from Power Plant Flue Gas,” 7th Annual Conference on Carbon Capture & Sequestration, May, Pittsburgh, USA, 2008
  6. Yi CK, Jo SH, Seo YW, Moon KH, Yoo JS, Stud. Surf. Sci. Catal., 159, 501, 2006
  7. Yi CK, Jo SH, Seo Y, J. Chem. Eng. Jpn., 41(7), 691, 2008
  8. Seo YW, Jo SH, Ryu CK, Yi CK, Chemosphere, 69, 712, 2007
  9. Seo YW, Jo SH, Ryu CK, Yi CK, J. Environ. Eng., 135, 473, 2009
  10. Park YC, Jo SH, Park KW, Park YS, Yi CK, Korean J. Chem. Eng., 26(3), 874, 2009
  11. Park KW, Park YS, Park YC, Jo SH, Yi CK, Korean Chem. Eng. Res., 47(3), 349, 2009
  12. Yi CK, Jo SH, Seo YW, Lee JB, Ryu CK, Int. J. Greenhouse. Gas. Control., 1, 31, 2007
  13. Ryu CK, Lee J, Eom TH, Baek JI, Eom HM, Yi CK, “CO2 Capture from Flue Gas using Dry Regenerable Sorbents," 8th International Conference on Green House Gas Control Technology Trondheim, Norway, CD-Rom, 2006
  14. Lee JB, Ryu CK, Baek JI, Lee JH, Eom TH, Kim SH, Ind. Eng. Chem. Res., 47(13), 4465, 2008
  15. Lee SC, Kim JC, Catalysis Surveys from Asia, 11, 171, 2007
  16. Lee SC, Chae HJ, Lee SJ, Park YH, Ryu CK, Yi CK, Kim JC, J. Mol. Catal. B-Enzym., 56, 179, 2009
  17. Lee SC, Choi BY, Lee TJ, Ryu CK, Soo YS, Kim JC, Catal. Today, 111(3-4), 385, 2006
  18. Lee SC, Chae HJ, Lee SJ, Choi BY, Yi CK, Lee JB, Ryu CK, Kim JC, Environ. Sci. Technol., 42, 2736, 2008
  19. http://www.netl.doe.gov/technologies/carbon_seq/refshelf/project%20portfolio/2007/2007Roadmap.pdf.
  20. http://www.fe.doe.gov.
  21. Figueroa J, Fout T, Plasynski S, McIlvried H, Srivastava R, Int. J. Greenhouse. Gas. Control., 2, 9, 2008
  22. Choi S, Drese JH, Jones CW, Chem Sus Chem, 2, 796, 2009
  23. Przepiorski J, Skrodzewicz M, Morawski AW, Appl. Surf. Sci., 225(1-4), 235, 2004
  24. Pevida C, Plaza MG, Arias B, Fermoso J, Rubiera F, Pis JJ, “Nitrogen Enriched Solid Sorbents for CO2 Capture,” 2007 International Conference on Coal Science and Technology, paper 7C4, 6 Aug. London, 2007
  25. Veawab A, Tontiwachwuthikul P, Chakma A, Ind. Eng. Chem. Res., 38(10), 3917, 1999
  26. Satyapal S, Filburn T, Trela J, Strange J, Energy Fuels, 15(2), 250, 2001
  27. Birbara PJ, Filburn TP, Nalette TA, US Patent No. 5,876,488, 1999
  28. Birbara PJ, Nalette TA, US Patent 5,492,683, 1996
  29. Xu XC, Song CS, Andresen JM, Miller BG, Scaroni AW, Energy Fuels, 16(6), 1463, 2002
  30. Ma X, Wang X, Song C, “The Second Generation of Nano-Porous “Molecular-Basket” Sorbents for CO2 Capture from Flue Gas,” The 25th Annual International Pittsburgh Coal Conference, Pittsburgh, PA, 2008
  31. Son WJ, Choi JS, Ahn HS, Microporous Mesoporous Mater., 113, 31, 2008
  32. Plaza MG, Pevida C, Arenillas A, Rubiera F, Pis JJ, Fuel, 86, 22042212, 2007
  33. Gray ML, Soong Y, Champagne KJ, Baltrus J, Stevens RW, Toochinda P, Chuang SSC, Sep. Purif. Technol., 35(1), 31, 2004
  34. Maroto-Valer MM, Tang Z, Zhang YZ, Fuel Process. Technol., 86(14-15), 1487, 2005
  35. Maroto-Valer MM, Lu Z, Tang Z, Zhang Y, Waste Management, 28, 2320, 2008
  36. Dillon EP, Crouse CA, Barron AR, ACS Nano, 2, 156, 2008
  37. Siriwardane R, Robinson C, Stevens R Jr., “Solid Sorbents for CO2 Capture from Post-Combustion and Pre-Combustion Gas Streams,” 2007 International Conf. on Coal Science and Technology, 8C4, 7 CD-Rom, Aug., London, 2007
  38. Gray ML, Champagne KJ, Fauth D, Baltrus JP, Pennline H, Int. J. Greenhouse Gas Control, 2, 3, 2008
  39. Drage TC, Arenillas A, Smith KM, Pevida C, Piippo S, Snape CE, Fuel, 86, 22, 2007
  40. Arenillas A, Drage TC, Smith K, Snape CE, J. Anal. Appl. Pyrolysis., 74, 298, 2005
  41. Li H, Eddaoudi M, O’keeffe M, Yaghi OM, Nature, 402, 276, 1999
  42. Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O’keeffe M, Yaghi OM, Science, 295, 469, 2002
  43. Millward AR, Yaghi OM, J. Am. Chem. Soc., 127(51), 17998, 2005
  44. Arstad B, Fjellvag H, Kongshaug KO, Swang O, Blom R, Adsorption, 14, 755, 2008
  45. Abanades JC, Rubin ES, Anthony EJ, Ind. Eng. Chem. Res., 43(13), 3462, 2004
  46. Abanades JC, Grasa G, Alonso M, Rodriguez N, Anthony EJ, Romeo LM, Environ. Sci. Technol., 41, 5523, 2007
  47. Chang ACC, Chuang SSC, Gray M, Soong Y, Energy Fuels, 17(2), 468, 2003
  48. Leal O, Bolivar C, Ovalles C, Garcia J, Espidel Y, Inorg. Chimica. Acta, 240, 183, 1995
  49. Siriwardane RV, Shen MS, Fisher EP, Poston JA, Energy Fuels, 15(2), 279, 2001
  50. Siriwardane RV, Shen MS, Fisher EP, Energy Fuels, 17(3), 571, 2003
  51. Siriwardane RV, Shen MS, Fisher EP, Energy Fuels, 19(3), 1153, 2005
  52. Siriwardane RV, Robinson C, Shen M, Simonyi T, Energy Fuels, 21(4), 2088, 2007
  53. Birbara PJ, Filburn TP, Harvey MH, Nalette TA, 2006. US Patent 6,364,938.
  54. Liang Y, Harrison DP, Gupta RP, Green DA, McMichael WJ, Energy Fuels, 18(2), 569, 2004