Issue
Korean Chemical Engineering Research,
Vol.48, No.1, 121-127, 2010
바이오디젤 생산을 위한 리파아제 고정 부직포의 효소활성화
Enzyme Activity of Lipase Immobilized Non-Woven Fabric for Biodiesel Production
본 연구의 목적은 효소법을 이용한 바이오디젤의 생산에서의 효소(lipase) 활성화를 최적화함에 있다. 효과적인 방법으로 효소를 고정하기 위해 방사선 그라프트 중합법을 이용한 부직포에 음이온 교환기인 ethanolamine과 diethylamine을 도입시켜 음이온 교환 부직포(이때 얻어진 부직포는 EtA, DEA-EtA 부직포라 함)를 합성하였다. 기존에 사용하던 다공성 중공사막의 경우 시간이 지남에 따라 막힘 현상에 따라 유속이 현저하게 줄어드는 점을 보완하고자 기공(pore size)이 300 μm인 부직포를 선택하였다. 이 부직포에 음이온 교환기가 도입된 EtA, DEA-EtA 부직포의 최적효소 흡착 특성과 효소 활성도에 대하여 고찰하였다. 그 결과 효소 흡착량은 EtA, DEA-EtA 부직포가 비슷하였으나(EtA nonwoven fabric: 15.69 mg/g, DEA-EtA non-woven fabric: 14.45 mg/g) 기름을 투과시킨 결과 효소 활성화는 DEA-EtA 부직포가 EtA 부직포에 비해 현저히 떨어짐(EtA non-woven fabric: 3.50mol/h·kg, DEA-EtA non-woven fabric: 0.38mol/h·kg)을 알 수 있었다. 이 음이온교환기를 이용해 효율적인 바이오디젤 생산을 위한 온도, 효소고정량, 기름과 알코올과의 관계 등의 최적의 조건을 도출하였다.
This study is to optimize the enzyme(lipase) activity for biodiesel production. The ion-exchanged nonwoven fabrics(EtA, DEA-EtA non-woven fabric) containing ethanolamine, diethylamine groups are used by radiation induced grafted polymerization onto a non-woven fabric for more effective immobilization of lipase. Since the porous hollow fiber membranes are showed the low throughputibehe non-woven fabric membranes are used for biodiesel production. The physical charateristics of enzyme immobilized and the enzyme activity to EtA and DEA-EtA non-woven fabrics are studied. The EtA non-woven fabrics are quite similar to DEA-EtA non-woven fabric for the amount of enzyme immobilized(EtA non-woven fabric:15.69 mg/g, DEA-EtA non-woven fabric:14.45 mg/g) but DEA-EtA nonwoven fabrics have shown the lower permeabiliquite the organic solvent than the EtA non-woven fabrics(EtA non-woven fabric:3.50 mol/h·kg, DEA-EtA non-woven fabric:0.38 mol/h·kg). Optimum characteristics of ehe non-woven fabric membranes and the limilaractivity are also investigated for the effective biodiesel production.
[References]
  1. Kyung HR, Young TO, Teansactions of KSAE, 14, 115, 2006
  2. Marchetti JM, Miguel VU, Errazu AF, Renew. Sust. Energ. Rev., 11, 1300, 2007
  3. Yagiz F, Kazan D, Akin AN, Chem. Eng. J., 134(1-3), 262, 2007
  4. Srivastava A, Prasad R, Renew. Sust. Energ. Rev., 4, 111, 2000
  5. Madras G, Kolluru C, Kumar R, Fuel., 83, 2029, 2004
  6. Freedman B, Pryde EH, Mounts TL, J. Am. Oil. Chem. Soc., 61, 1638, 1984
  7. Haas M, Lipid Technology, 16, 7, 2004
  8. Brady C, Metcalfe L, Slaboszewski D, Frank D, J. Am. Oil. Chem. Soc., 65, 917, 1988
  9. Kawakita H, Sugita K, Saito K, Tamada M, Sugo T, Kawamoto H, Biotechnol. Prog., 18(3), 465, 2002
  10. Goto M, Kamiya N, Miyata M, Nakashio F, Biotechnol. Prog., 10(3), 263, 1994
  11. Kim BS, Kim M, Heo KB, Hong JH, Na WJ, Kim JH, J. Ind. Eng. Chem., 17, 303, 2006
  12. Goto M, Kawakita H, Uezu K, Tsuneda S, Saito K, Goto M, Tamada M, Sugo T, J. Am. Oil. Chem. Soc., 83, 209, 2006
  13. Kim HS, Kim M, Proc. Membr. Soc. Conference, 67, 1999
  14. Kim M, J. Membr. Sci., 56, 289, 1991
  15. Yeo JM, Park CH, Lee DH, Kim SW, Theor. Appl. Chem. Eng., 10, 1538, 2004
  16. Eriksson KEL, American Shemical Society, 1998