Issue
Korean Chemical Engineering Research,
Vol.48, No.1, 110-115, 2010
DAEM 분석 방법을 통한 국내 수입탄의 탈휘발화 반응특성 비교연구
Application of a DAEM Method for a Comparison of Devolatilization Kinetics of Imported Coals
본 연구 목적은 두가지 종류의 국내 수입탄에 대한 열분해 반응율을 구하고 이를 비교하는 것이다. 이를 위해 TGA 를 통하여 열분해 실험을 수행하였으며, 반응상수 분석은 New DAEM 방법을 이용하였다. 서로 다른 가열속도에서 각각 얻어진 TGA 질량변화 곡선으로부터, 활성화 에너지의 분포함수를 구한 후 최고빈도를 나타내는 활성화 에너지를 평균 활성화 에너지로 결정하였다. 그 결과 석탄의 종류에 따라 상기 반응에 대한 반응속도상수가 확실한 차이를 보였다. 이 같은 New DAEM 분석기법을 통해 얻은 반응상수를 적용시킨 CPD 모델을 가지고 예측한 결과가 TGA 실험치와 비교할 때보다 더 잘 일치함도 확인할 수 있었다.
The experiment was designed to compare pyrolysis kinetics of two different classes of imported coal. The pyrolysis behaviors of the coals were first observed with thermogravimetric analyzer(TGA). The kinetic analysis was further done based on a new distributed activation energy model(New DAEM). During the analysis, weight loss curves measured at three different heating rates were used to obtain the activation energy distribution function curve f(E) of a given coal sample where a mean activation energy is determined by its peak. The results show a significant difference in the mean activation energy between two coals for the pyrolytic reaction. The prediction of a chemical percolation devolatilization(CPD) model where the kinetics obtained from the New DAEM method were incorporated is in much closer agreement with an experimental data of TGA particularly for the bituminous coal.
[References]
  1. Smith KL, Smoot LD, Fletcher TH, Pugmire RJ, Plenum, New York, NY, 1994
  2. Badzioch S, Hawksley PGW, Ind. Eng. Chem. Process Des. Develop., 9, 521, 1970
  3. Kobayashi H, Dept. of Mechanical Engineering, Mass. Inst. Technol., Sc. D., 1976
  4. Anthony DB, Howard JB, AIChE J, 22, 625, 1976
  5. Solomon PR, Serio MA, Hamblen DG, Yu ZZ, Charpenay S, Div. Fuel Chem., 35, 479, 1990
  6. Niksa S, Kerstein AR, Energy Fuels, 5, 647, 1991
  7. Fletcher TH, Kerstein AR, Pugmire RJ, Solum MS, Grant DM, Energy Fuels, 6, 414, 1992
  8. Genetti D, Fletcher TH, Pugmire RJ, Energy Fuels, 13, 60, 1987
  9. Grant DM, Pugmire RJ, Fletcher TH, Kerstein AR, Energy Fuels, 3, 175, 1989
  10. Vand V, Proc. Phys. Soc., 55, 222, 1943
  11. Pitt GJ, Fuel, 41, 267, 1962
  12. Suuberg EM, Peter WA, Howard JB, 17th Int. Symp. Combustion, The Combustion Institute, 117-130, 1978
  13. Reynolds JG, Burnham AK, Energy Fuels, 7, 610, 1993
  14. Solomon PR, Hamblen DG, Carangelo RM, Serio MA, Desphande GV, Energy Fuels, 2, 405, 1988
  15. Fletcher TH, Kerstein AR, Pugmire RJ, Solum MS, Grant DM, Energy Fuels, 4, 54, 1990
  16. Niksa S, Kerstein AR, Energy Fuels, 5, 673, 1991
  17. Hashimoto K, Miura K, Watanabe T, AIChE J., 28, 737, 1982
  18. Miura K, Energy Fuels, 9(2), 302, 1995
  19. Maki T, Takatsuno A, Miura K, Energy Fuels, 11(5), 972, 1997
  20. Miura K, Maki T, Energy Fuels, 12(5), 864, 1998
  21. Doyle CD, Journal of Applied Polymer Science, 15, 285, 1961
  22. Wen CY, Bailie RC, Lin CY, O’Brien WS, Adv. In Chemistry Series 131, Ame. Chem. Socie., 9, 1974
  23. Fletcher TH, Kerstein AR, Pugmire RJ, Solum MS, Grant DM, Energy Fuels, 4, 54, 1990
  24. Serio MA, Hamblen DG, Markham JR, Solomon PR, Energy Fuels, 1, 138, 1987