Issue
Korean Chemical Engineering Research,
Vol.48, No.1, 98-102, 2010
목련잎 추출액을 이용한 Au Core-Ag Shell 합금 나노입자의 생물학적 합성
Biological Synthesis of Au Core-Ag Shell Bimetallic Nanoparticles Using Magnolia kobus Leaf Extract
목련잎 추출액을 이용하여 Au core-Ag shell 합금 나노입자를 합성하였다. 환원제인 식물잎 추출액을 먼저 HAuCl4 용액과 반응시키고 다음에 AgNO3 용액과 반응시켜 금 seed와 은 shell을 형성시켰다. 반응시간에 따른 UV-visible spectroscopy의 변화를 모니터링하여 합금 나노입자의 형성을 관찰하였다. 합성된 합금 나노입자를 transmission electron microscopy(TEM), energy dispersive X-ray spectroscopy(EDS), X-ray photoelectron spectroscopy(XPS) 등으로 특성화 하였다. TEM image로부터 관찰된 합금 나노입자는 삼각형, 오각형, 육각형 등의 평판과 구 구조의 혼합물이었다. EDS와 XPS 분석으로부터 결정된 금/은 합금 나노입자의 원자 은 함량은 각각 34와 65 wt%로 Au core-Ag shell 나노구조가 형성되었음을 알 수 있었다. 이러한 core-shell 형태의 나노구조는 표면 강화 라만 분광 및 생물분자의 고감도 검출 등에 잠재적인 응용이 기대된다.
Magnolia kobus leaf extract was used for the synthesis of bimetallic Au core-Ag shell nanoparticles. Gold seeds and silver shells were formed by first treating aqueous solution of HAuCl4 and then AgNO3 with the plant leaf extract as reducing agent. UV-visible spectroscopy was monitored as a function of reaction time to follow the formation of bimetallic nanoparticles. The synthesized bimetallic nanoparticles were characterized with transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy(EDS), and X-ray photoelectron spectroscopy(XPS). TEM images showed that the bimetallic nanoparticles are a mixture of plate(triangles, pentagons, and hexagons) and spherical structures. The atomic Ag contents of the bimetallic Au/Ag nanoparticles determined from EDS and XPS analysis were 34 and 65 wt%, respectively, suggesting the formation of bimetallic Au core-Ag shell nanostructure. This core-shell type nanostructure is expected to have potential for application in surface enhanced Raman spectroscopy and in the sensitive detection of biomolecules.
[References]
  1. Kim BS, Song JY, in: Hou CT, Shaw JF(Ed.), Biocatalysis and Agricultural Biotechnology, CRC Press, 399-407, 2009
  2. Seo WS, Kim TT, Sung JS, Song KC, Korean Chem. Eng. Res., 42(1), 78, 2004
  3. Lim JH, Kang KY, Im B, Lee JS, Korean Chem. Eng. Res., 46(4), 756, 2008
  4. Rai A, Chaudhary M, Ahmad A, Bhargava S, Sastry M, Mat. Res. Bul., 42, 1212, 2007
  5. Bhumkar DR, Joshi HM, Sastry M, Pokharkar VB, Pharm. Res., 24, 1415, 2007
  6. Klaus T, Joerger R, Olsson E, Granqvist CG, Proc. Natl. Acad. Sci. USA, 96, 13611, 1999
  7. Konishi Y, Ohno K, Saitoh N, Nomura T, Nagamine S, Hishida H, Takahashi Y, Uruga T, J. Biotechnol., 128, 648, 2007
  8. Nair B, Pradeep T, Cryst. Growth Des., 2, 293, 2002
  9. Willner I, Baron R, Willner B, Adv. Mater., 18(9), 1109, 2006
  10. Gardea-Torresdey JL, Parsons JG, Gomez E, Peralta-Videa J, Troiani HE, Santiago P, Jose-Yacaman M, Nano Lett., 2, 397, 2002
  11. Shankar SS, Rai A, Ahmad A, Sastry M, J. Colloid Interface Sci., 275(2), 496, 2004
  12. Mandal S, Selvakannan PR, Pasricha R, Sastry M, J. Am. Chem. Soc., 125(28), 8440, 2003
  13. Liu MZ, Guyot-Sionnest P, J. Phys. Chem. B, 108(19), 5882, 2004
  14. Huang CC, Yang ZS, Chang HT, Langmuir, 20(15), 6089, 2004
  15. Metraux GS, Cao YC, Jin R, Mirkin CA, Nano Lett., 3, 516, 2003
  16. Sanedrin RG, Georganopoulou DG, Park S, Mirkin CA, Adv. Mater., 17(8), 1027, 2005
  17. Song JY, Kim BS, Korean J. Chem. Eng., 25(4), 808, 2008
  18. Song JY, Kim BS, Bioprocess Biosyst. Eng., 32, 79, 2009
  19. Song JY, Jang HK, Kim BS, Process Biochem., 44, 1133, 2009
  20. Song JY, Kwon EY, Kim BS, Bioprocess Biosyst. Eng., 33, 159, 2010
  21. Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, Sastry M, Chem. BioChem., 3, 461, 2002