Issue
Korean Chemical Engineering Research,
Vol.48, No.1, 80-87, 2010
저등급 석탄, Wood Chip, Petroleum Coke의 수증기 가스화반응 Kinetics 연구
A Kinetic Study of Steam Gasification of Low Rank Coal, Wood Chip and Petroleum Coke
발열량이 낮은 저등급 석탄이나 황함량이 많은 petroleum-coke는 그 이용이 제한적이지만 공급이 풍부하여 잠재력이 큰 에너지원이므로, 가스화공정에 적용하여 고급연료인 수소나 액체연료를 생산할 수 있다. 본 연구에서는 상압의 열천칭 반응기(thermobalance)에서 wood chip, 저등급 석탄인 갈탄, 역청탄, 무연탄, pet-coke의 수증기 가스화 반응특성을 조사하였다. 가스화 온도 600~850 ℃, 수증기 분압 30~90 kPa의 범위에서 조업변수들이 가스화반응속도에 미치는 영향을 조사하였다. 기체-고체 반응모델로서 modified volumetric reaction model을 적용하여 가스화반응의 거동을 묘사하고 가스화공정에 필수적인 kinetic 정보를 도출하였다. 저등급탄인 갈탄과 바이오매스인 wood chip은 휘발분 함량도 높고 비교적 높은 가스화반응속도를 보여 가스화반응공정에 적합한 연료이다. Arrhenius plot으로부터 활성화에너지는 wood chip, 갈탄, 역청탄, 무연탄, pet-coke에 대해 각각 260.3, 167.9, 134.6, 82.2, 168.9 kJ/mol으로 구해졌다. 각 연료에 대하여 수증기 가스화반응의 반응차수를 결정하였으며, 가스화공정 설계의 기초데이타로서 겉보기 반응속도식을 제시하였다.
Lignite of low rank coal and petroleum coke of high sulfur content can be high potential energy sources for coal gasification process because of their plentiful supply. The kinetic study of steam gasification has been performed in an atmospheric thermobalance with wood chip, lignite, bituminous, anthracite, pet-coke. The effects of gasification temperature(600~850 ℃) and partial pressure of steam(30~90 kPa) on the gasification rate have been investigated. The modified volumetric reaction model was applied to the experimental data to describe the behavior of carbon conversion and to evaluate the needed kinetic parameters. Lignite and wood chip with high volatile content showed high average gasification rates comparing to other fuel and thus they might be proper fuel for gasification processes. The activation energies for wood chip, lignite, bituminous, anthracite, and pet-coke through Arrhenius plot were found to be 260.3, 167.9, 134.6, 82.2, 168.9 kJ/mol, respectively. The expression of apparent reaction rates for steam gasification of various chars have been proposed as basic information for the design of coal gasification processes.
[References]
  1. Smouse S, APP CFE Task Force Meeting, July, Beijing, 2007
  2. Lee S, Kim S, Korean Chem. Eng. Res., 46(3), 443, 2008
  3. McKee D, Fuel, 62, 170, 1983
  4. Peng FF, Ph.D. Dissertation, West Virginia University, 1989
  5. Wen CY, Ind. Eng. Chem., 60, 34, 1968
  6. Ishida M, Wen CY, AIChE J., 14, 175, 1978
  7. Kasaoka S, Sakata Y, Tong C, Int. Chem. Eng., 25, 160, 1985
  8. Jang YW, MS Thesis, Kunsan National University, Korea, 2002
  9. Lee JS, Ph.D. Dissertation, KAIST, Korea, 1996
  10. Kayembe N, Pulsifer AH, Fuel, 55, 211, 1976