Issue
Korean Chemical Engineering Research,
Vol.48, No.1, 68-74, 2010
Alberta 오일샌드의 유동층 열분해 연속실험을 통한 열분해 특성 파악
Study of Pyrolysis Behavior of Alberta Oil Sand by Continuous Operation of Fluidized-Bed Reactor
본 실험은 오일샌드에 함유된 역청을 회수함에 있어 유동층 열분해 실험을 통한 역청 회수의 적합성을 확인하기 위하여 수행하였다. 본 실험에 사용된 캐나다 Alberta 오일샌드는 역청을 11.9%를 함유하고 있으며 열분해 공정을 통하여 회수한 열분해 오일은 오일샌드에 함유되어 있는 역청에 비하여 경질화되는 특성을 갖는다. 본 실험을 위하여 높이 170 cm의 반응기를 설치하였으며 1 atm, 500 ℃의 반응 조건 하에서 연속 운전 실험을 실시하였고 유동화 가스는 N2를 사용하여 1.62 Umf 조건에서 오일샌드의 열분해 반응특성을 연구하였다. 오일샌드 유동층 열분해 실험 결과 역청의 전환율은 87.76%이며 액체 생성물은 74.45%, 가스 생성물은 13.31%의 결과를 얻었다. 오일샌드 유동층 열분해 실험 중 발생하는 열분해 가스는 실시간 가스분석기를 사용하여 H2, O2, CO, CO2, CH4, NO를 분석하였으며 탄화수소 C1- C4의 분석은 가스크로마토그래피를 사용하여 분석하였다. 열분해 오일은 회수하여 원소분석, 발열량 분석, 중금속 분석과 아스팔텐(asphaltenes) 분석을 실시하였으며 SIMDIS 분석을 통하여 열분해 오일의 특성을 분석하였다. 분석 결과 나프타(naphtha)는 11.50%, 중간유분(middle distillation)은 44.83%, 중질유(heavy oil)는 43.66%의 결과를 얻었다. 이는 역청과 비교하여 나프타와 중간유분 함량이 높은 경질화된 열분해 오일이 회수되었음을 알 수 있다.
In this study, fluidized-bed pyrolysis has been conducted in order to recover the bitumen contained in the oil sand. Canada Alberta oil sand contains 11.9% of bitumen and the bitumen-derived heavy oil produced in fluidizedbed tends to be upgraded relative to the bitumen. The continuous operation has been performed using N2 as a fluidization gas at 1 atm and 500 ℃ in a reactor of 170 cm height. The results showed 87.76% of bitumen conversion, where liquid products are 74.45% and gas products are 13.31%. H2, O2, CO, CO2, CH4, and NO and C1~C4 hydrocarbons in the gas products were analyzed by on-line gas analyzer and gas chromatography, respectively. The pyrolysis oil was analyzed by using proximate analysis, heavy metal analysis, SIMDIS, asphaltenes, and heating value. By SIMDIS analysis, naphtha was 11.50%, middle distillation was 44.83% and heavy oil was 43.66%. It was obvious that the pyrolysis oil was upgraded compared with bitumens.
[References]
  1. Masliyah J, Zhou ZJ, Xu ZH, Czarnecki J, Hamza H, Can. J. Chem. Eng., 82(4), 628, 2004
  2. Rogers VV, Liber K, MacKinnon MD, Chemosphere, 48, 519, 2002
  3. Renault S, Lai C, Zwiazek JJ, MacKinnon M, Environ. Pollut., 102, 177, 1998
  4. Park YK, Choi WC, Jeong SY, Lee CW, Korean Chem. Eng. Res., 45(2), 109, 2007
  5. Lee JK, Ko HC, Regional Economic Focus, 1, 1, 2007
  6. http://www.energy.gov.ab.ca/OilSands/pdfs/osgenbrf.pdf.
  7. Fletcher JV, Deo MD, Hanson FV, Fuel, 74, 311, 1995
  8. Hanson FV, Cha SM, Deo MD, Obad AG, Fuel, 71, 1455, 1992
  9. Pakdel H, Roy C, Energy Fuels, 17(5), 1145, 2003
  10. Deo MD, Fletcher JV, Shun D, Hanson FV, Oblad AG, Fuel, 70, 1271, 1991
  11. Meng M, Hu HQ, Zhang QM, Li X, Wu B, Energy Fuels, 21(4), 2245, 2007
  12. Park YC, Paek JY, Bae DH, Shun D, Korean J. Chem. Eng., 26(6), 1608, 2009
  13. Khraisha YH, Int. J. Energy Res., 23(10), 833, 1999
  14. Ahmed I, Gupta AK, Applied Energy, 86, 1813, 2009
  15. Yucel HG, Anal. Chim. Acta., 547, 94, 2005
  16. Zou N, Firor RL, Agilent technologies Application Note 5989-6081EN, Agilent Technologies Publisher, Wilmington, Delaware, USA, 2007
  17. Shuyuan L, Jianqiu W, Huaping T, Zhaoliang W, Fuel, 74, 1191, 1995