Issue
Korean Chemical Engineering Research,
Vol.48, No.1, 20-26, 2010
광주지역 PM2.5 입자 수용성 성분의 화학적 특성조사
Chemical Characteristics of Water Soluble Components in Fine Particulate Matter at a Gwangju area
수용성 유기 및 무기성분은 대기 에어로졸 입자의 중요한 구성성분들이며 간접적으로 기후에 영향을 미치는 구름 응결핵으로 작용한다. 유기 및 원소탄소(organic and elemental carbon, OC 및 EC) 및 수용성 유기탄소(water soluble OC, WSOC) 및 이온성분농도를 조사하기 위하여 광주지역에서 24시간 기준의 미세입자(PM2.5)를 측정하였다. 측정기간 중 PM2.5 수용성 분율의 주요성분인 WSOC, NO3-, SO4^(2-) 및 NH4+의 평균농도는 각각 2.11, 5.73, 3.51 및 3.31 μg/m3 이었으며, PM2.5 농도의 12.0(2.9~23.9%), 21.0(12.9~37.6%), 11.6(2.5~25.9%), 및 11.7%(3.8~18.6%)를 차지하였다. 총 수용성 성분(유기+무기) 중 WSOC 화합물이 차지하는 분율은 평균 17.6%(5.4~35.9%)이었다. EC 추적자 기법을 이용해 평가한 2차 OC 및 WSOC 농도는 각각 평균적으로 0.78 및 0.34 μg/m3이었으며, 전체 OC 및 WSOC 중의 평균 17.9%(범위: 0~44.4%) 및 평균 11.2%(범위: 0~51.4%)를 차지하였다. 광주지역 겨울철에 측정한 SO4^(2-) 입자는 국지적인 기상산화반응보다는 장거리 이동 또는 수용액 변환과정에 의한 영향, 구름 내 변환과정 등이 황산염 입자 생성에 중요하게 작용했을 것으로 판단한다.
Water soluble organic and inorganic species are important components in atmospheric aerosol particles and may act as cloud condensation nuclei to indirectly affect the climate. To characterize organic and elemental carbon(OC and EC), water-soluble organic carbon(WSOC) and inorganic ionic species contents, daily PM2.5 measurements were made during the wintertime at an urban site of Gwangju. Average concentrations of WSOC, NO3-, SO4^(2-) and NH4+, which are major components in the water-soluble fraction in PM2.5, are 2.11, 5.73, 3.51 and 3.31 μg/m3, respectively, representing 12.0(2.9~23.9%), 21.0(12.9~37.6%), 11.6(2.5~25.9%) and 11.7%(3.8~18.6%) of the PM2.5, respectively. Abundance of water soluble organic compounds ranged from 5.4 to 35.9% of total water soluble organic and inorganic components with a mean of 17.6%. Even though the sampling was performed during the winter, the average contributions of secondary OC and WSOC, as deduced from primary OC/EC(or WSOC/EC) ratio, were relatively high, accounting for 17.9%(0~44.4%) of the total OC and 11.2%(0.0~51.4%) of the total WSOC, respectively. During the sampling period, low SO4^(2-) / (SO4^(2-) + SO2) ratio of 0.14(0.03~0.32) and relative humidity condition in the winter time suggest an possibility of impact of long-range transport and/or aqueous transformation processes such as metal catalyzed oxidation of sulfur, in-cloud processes, etc.
[References]
  1. Andreae MO, Jones CD, Cox PM, Nature, 435, 1187, 2005
  2. Andreae MO, Rosenfeld D, Earth-Science Reviews, 89, 13, 2008
  3. Jacob DJ, Winner DA, Atmos. Environ., 108, 1, 2008
  4. Zhuang GS, Yi Z, Duce RA, Brown PR, Nature, 355, 537, 1992
  5. Saxena P, Hildemann LM, J. Atmos. Chem., 24, 57, 1996
  6. Malm WC, Molenar JV, Eldred RA, Sisler JF, J. Geophys. Res., D1, 19251, 1996
  7. Saxena P, Hildemann LM, McMurry PH, Seinfeld JH, J. Geophys. Res., 100, 18755, 1995
  8. Facchini MC, Decesari S, Mircea M, Fuzzi S, Loglio G, Atmos. Environ., 34, 4853, 2000
  9. Maria SF, Russell LM, Gilles MK, Myneni SCB, Science, 306, 1921, 2004
  10. Decesari S, Facchini MC, Matta E, Lettini F, Mircea M, Fuzzi S, Tagliavini E, Putaud JP, Atmos. Environ., 35, 3691, 2001
  11. Yu JZ, 20th Annual Conference of American Association for Aerosol Research, October 15-19, Portland, OR, USA, 2001
  12. Yu JZ, Research Report (Ref # AS 01-018), Hong Kong EPD, 2002
  13. Park SS, Hur JJ, Cho SY, Kim SJ, Kim YJ, J. Korean Soc. Atmos. Environ., 23, 675, 2007
  14. Turpin BJ, Saxena P, Andrews E, Atmos. Environ., 34, 2983, 2000
  15. National Institute of Occupational Safety and Health(NIOSH), “Method 5040 Issue 1: Elemental Carbon (Diesel Exhaust),” NIOSH Manual of Analytical Methods, 4th ed., Cincinnati, OH., 1996
  16. Korea Meteorological Administration(http://www.kma.go.kr/sfc/sfc_03_02.jsp)
  17. Korea Meteorological Administration(http://www.kma.go.kr)
  18. Turpin BJ, Lim HJ, Aerosol Sci. Technol., 35, 602, 2001
  19. Seinfeld JH, Pandis SN, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, John Wiley, Hoboken NJ, 1998
  20. Zappoli S, Andracchio A, Fuzzi S, Facchini MC, Gelencser A, Kiss G, Krivacsy Z, Molnar A, Meszaros E, Hansson HC, Rosman K, Zebuhr Y, Atmos. Environ., 33, 2733, 1999
  21. Viana M, Maenhaut W, Brink HM, Chi X, Weijers E, Querol X, Alastuey A, Mikuska P, Vecera Z, Atmos. Environ., 41, 5972, 2007
  22. Saarikoski S, Sillanpaa M, Sofiev M, Timonen H, Saarnio K, Teinila K, Karppinen A, Kukkonen J, Hillamo R, Atmos. Environ., 41, 3577, 2007
  23. Turpin BJ, Huntzicker JJ, Atmos. Environ., 29, 3527, 1995
  24. Cabada JC, Pandis SN, Subramanian R, Robinson AL, Polidori A, Turpin B, Aerosol Sci. Technol., 38, 140, 2004
  25. Park SS, Harrison D, Pancras P, Ondov JM, J. Geophys. Res. Atmos., 110, D07S06, 2005