Issue
Korean Chemical Engineering Research,
Vol.48, No.1, 1-9, 2010
이온성 액체를 이용한 CO2 분리기술
CO2 Separation Techniques Using Ionic Liquids
이산화탄소(CO2)가 지구온난화의 주요 원인으로 밝혀지면서 CO2를 분리, 회수, 저장하는 기술의 개발과 적용에 대한 관심이 높아지고 있다. 아민화합물은 대표적인 CO2 흡수제이지만 재생 시 많은 에너지가 필요하고 흡수제가 열분해되며 증발하여 소실되는 단점이 있다. 이러한 단점을 개선할 수 있는 흡수제로 이온성 액체가 개발되고 있다. 이온성 액체는 양이온, 음이온으로 구성된 염이지만 상온에서도 액체상태를 유지하는 물질로서, 높은 열적 안정성, 낮은 휘발성, 특정 기체에 대한 선택적 흡수능력 등의 특성을 보인다. 여기서는 CO2 흡수능력이 큰 것으로 보고된 이온성 액체들을 바탕으로 이온성 액체의 구조와 온도, 압력, 수분 등 CO2 흡수량에 영향을 미치는 요인들을 비교하고, CO2 분리제로서 이온성 액체의 활용 가능성을 알아보았다.
Since carbon dioxide, CO2, was revealed as a major greenhouse gas, techniques for its separation, capture, and storage have received increasing interest in recent years. Aqueous amines are the most widely accepted CO2 absorbents, but they cause the problems such as high regeneration energy, thermal degradation, and loss of absorbents due to their volatility. Ionic liquids having high thermal stability, extremely low vapor pressure, and capability of selectively absorbing specific gases have been proposed as new CO2 capturing solvents which may potentially replace aqueous amines. By reviewing the ionic liquids having capability to absorb CO2 reported in previous papers, we seek to develop a comprehensive understanding on the factors that influence the CO2 solubility in ionic liquids such as their structures, absorption temperature, pressure, water content, etc., and to estimate the potential of ionic liquids as CO2 separating media.
[References]
  1. Baltus RE, Counce RM, Culbertson BH, Luo HM, DePaoli DW, Dai S, Duckworth DC, Sep. Sci. Technol., 40(1-3), 525, 2005
  2. Alejandre J, Rivera JL, Mora MA, de la Garza V, J. Phys. Chem. B, 104(6), 1332, 2000
  3. Gutowski KE, Maginn EJ, J. Am. Chem. Soc., 130, 14690, 2008
  4. Lee HJ, Kim DS, Kim HG, Kim HS, Korean Ind. Chem. News, 12(2), 1, 2009
  5. Seddon KR, Stark A, Torres MS, Pure Appl. Chem., 72, 2275, 2000
  6. Zhang W, Li Z, Han B, Ha S, Song J, Xie Y, Zhou X, Green Chem., 10, 1142, 2009
  7. Sen M, Paolucci S, IIR Gustav Lorentzen Conference on Natural Working Fluids, 7th, Trondheim, Norway, May, 28, 2006
  8. Blanchard LA, Hancu D, Beckman EJ, Brennecke JF, Nature, 399(6731), 28, 1999
  9. Anderson JL, Dixon JK, Brennecke JF, Acc. Chem. Roc., 40, 1208, 2007
  10. Zhang XC, Liu ZP, Wang WC, AIChE J., 54(10), 2717, 2008
  11. Shiflett MB, Yokozeki A, J. Phys. Chem. B, 111(8), 2070, 2007
  12. Aki SNVK, Mellein BR, Saurer EM, Brennecke JF, J. Phys. Chem. B, 108(52), 20355, 2004
  13. Cadena C, Anthony JL, Shah JK, Morrow TI, Brennecke JF, Maginn EJ, J. Am. Chem. Soc., 126(16), 5300, 2004
  14. Muldoon MJ, Aki SNVK, Anderson JL, Dixon JK, Brennecke JF, J. Phys. Chem. B, 111(30), 9001, 2007
  15. Yuan XL, Zhang SJ, Liu J, Lu XM, Fluid Phase Equilib., 257(2), 195, 2007
  16. Jacquemin J, Husson P, Majer V, J. Solution Chem., 36, 967, 2007
  17. Tang JB, Tang HD, Sun WL, Radosz M, Shen YQ, J. Polym. Sci. A: Polym. Chem., 43(22), 5477, 2005
  18. Baltus RE, Culbertson BH, Dai S, Luo HM, DePaoli DW, J. Phys. Chem. B, 108(2), 721, 2004
  19. Scovazzo P, Camper D, Kieft J, Poshusta J, Koval C, Noble R, Ind. Eng. Chem. Res., 43(21), 6855, 2004
  20. Fu D, Sun X, Pu J, Zhao S, J. Chem. Eng. Data, 51, 371, 2006
  21. Blanchard LA, Gu ZY, Brennecke JF, J. Phys. Chem. B, 105(12), 2437, 2001
  22. Toews KL, Schroll RM, Wai CM, Smart NG, Anal. Chem., 67, 4040, 1995
  23. Visser AE, Swatloski RP, Reichert WM, Griffin ST, Rogers RD, Ind. Eng. Chem. Res., 39(10), 3596, 2000
  24. Anthony JL, Anderson JL, Maginn EJ, Brennecke JF, J. Phys. Chem. B, 109(13), 6366, 2005
  25. Shariati A, Peters CJ, J. Supercrit. Fluids, 29(1-2), 43, 2004
  26. Shariati A, Peters CJ, J. Supercrit. Fluids, 30(2), 139, 2004
  27. Beckman EJ, Chem. Commun., 17, 1885, 2004
  28. Kazarian SG, Briscoe BJ, Welton T, Chem. Commun., 2047, 2000
  29. Tang JB, Sun WL, Tang HD, Radosz M, Shen YQ, Macromolecules, 38(6), 2037, 2005
  30. Bates ED, Mayton RD, Ntai I, Davis JH, J. Am. Chem. Soc., 124(6), 926, 2002
  31. Zhang JM, Zhang SJ, Dong K, Zhang YQ, Shen YQ, Lv XM, Chem. Eur. J., 12, 4021, 2006
  32. Jiang YY, Wang GN, Zhou Z, Wu YT, Geng J, Zhang ZB, Chem. Commun., 505, 2008
  33. Zhang Y, Zhang S, Lu X, Zhou Q, Fan W, Zhang X, Chem. Eur. J., 15, 3003, 2009
  34. Shirota H, Castner EW, J. Phys. Chem. B, 109(46), 21576, 2005