Issue
Korean Chemical Engineering Research,
Vol.47, No.5, 630-638, 2009
생활폐기물 소각장 2차 연소로에서 요소용액을 이용한 선택적무촉매환원 공정에 대한 전산유체역학 모사 및 현장 검증
Computational Fluid Dynamics(CFD) Simulation and in situ Experimental Validation for the Urea-Based Selective Non-Catalytic Reduction(SNCR) Process in a Municipal Incinerator
생활폐기물 소각장에서 발생되는 질소산화물(NOx)을 저감을 위한 요소용액 이용 선택적 무촉매 환원(SNCR: selective non-catalytic reduction) 상용화 공정에 대하여 전산유체역학(CFD: computational fluid dynamics) 모델을 개발하였고, 이 모델은 현장 실험결과로 검증되었다. 저 농도 일산화탄소와 12% 과잉공기 조건에서 요소와 질소산화물간의 7개 화학반응식과 액적의 증발과정을 포함하는 3차원 난류반응 흐름 CFD 모델은 소각로에 설치된 SNCR 공정의 유체역학 모사를 위하여 사용하였다. 본 SNCR 공정에서는 정면 노즐 1개와 측면 노즐 2개를 사용하여 2차 연소로 내에 요소용액을 공기와 함께 분사하였다. 3개의 노즐에 동일유량으로 NSR=1.8에서 요소용액과 공기를 분사할 경우, 출구온도는 현장 실험값과 모사값이 일치하며, 질소산화물 저감효율은 실험에서는 57%, CFD 모사에서는 59%를 보여주었다. 각 노즐 별 분사유량의 비율을 변화하면서 수행된 CFD 모사 결과에서는 3개의 노즐에 동일 유량을 분사하는 것보다 정면 1개 노즐에 측면노즐 유량의 2배를 분사하는 것이 약 8% 높은 질소산화물저감 효율을 보여주었다.
A computational fluid dynamics(CFD) model is developed and validated with on-site experiments for a urea-based SNCR(selective non-catalytic reduction) process to reduce the nitrogen oxides(NOx) in a municipal incinerator. The three-dimensional turbulent reacting flow CFD model having a seven global reaction mechanism under the condition of low CO concentration and 12% excess air and droplet evaporation is used for fluid dynamics simulation of the SNCR process installed in the incinerator. In this SNCR process, urea solution and atomizing air were injected into the secondary combustor, using one front nozzle and two side nozzles. The exit temperature(980 ℃) of simulation has the same value as in situ experiment one. The NOx reduction efficiencies of 57% and 59% are obtained from the experiment and CFD simulation, respectively at NSR=1.8(normalized stoichiometric ratio) for the equal flow rate ratio from the three nozzles. It is observed in the CFD simulations with varying the flowrate ratio of the three nozzles that the injection of a two times larger front nozzle flowrate than the side nozzle flowrate produces 8% higher NOx reduction efficiency than the injection of the equal ratio flowrate in each nozzle.
[References]
  1. Kim GY, Rlee GH, J. Inst. Inf. Technol., 5, 85, 2003
  2. Kim SB, Lee JW, Kim HJ, Huh IS, Korean Society Mechanical Engineers, 536, 1999
  3. Cremer MA, Montgomery CJ, Wang DH, Heap MP, Chen JY, Pro. Combustion Institute, 28, 2427, 2000
  4. Wendt JOL, Linak WP, Groff PW, Srivastava RK, AIChE J., 47(11), 2603, 2001
  5. Muzio LJ, Quartucy GC, Cichanowicz JE, Int. J. Environ. Pollut., 17, 4, 2002
  6. Tayyeb Javed M, Irfana N, Gibbs BM, J. Environ. Manag., 83, 251, 2007
  7. Lee JB, Kim SD, J. Chem. Eng. Jpn., 29(4), 620, 1996
  8. Lim YI, Yoo KS, Jeong SM, Kim SD, Lee JB, Choi BS, Korean Chem. Eng. Res., 35, 83, 1997
  9. Muzio LJ, Quartucy GC, Prog. Energy Combust. Sci., 23(3), 233, 1997
  10. Alzueta MU, Bilbao R, Millera A, Oliva M, Ibanez JC, Energy Fuels, 12(5), 1001, 1998
  11. Gentemann AMG, Caton JA, Proceedings of the 21st German Flame Day Conference, Combustion and Furnaces, University of Cottbus, Germany, 9-10, 2003
  12. Nguyen TDB, Kang TH, Lim YI, Kim SJ, Eom WH, Yoo KS, Korean Chem. Eng. Res., 46(5), 922, 2008
  13. Gentemann AMG, Caton JA, proceedings of the 2nd Joint Meeting of the United States Sections: The Combustion Institute, Oakland, CA, 25-28 March 2001.
  14. Park JS, Master Dissertation, Hanbat National Uinv., 5-12, 2003
  15. Park BS, Lee JW, Kim SW, Kang SK, Institute for Advanced Engineering, Daewoo Heavy Industry, Technical Report, 1-3, 1999
  16. Han XH, Wei XL, Schnell U, Hein KRG, Combust. Flame, 132(3), 374, 2003
  17. Alonso DF, Goncalves JAS, Azzopardi BJ, Coury JR, Chem. Eng. Sci., 56(16), 4901, 2001
  18. Miller JA, Bowman CT, Prog. Energy Combust. Sci., 15, 287, 1989
  19. Brouwer J, Heap MP, Pershing DW, Smith PJ, Twenty-Sixth Symposium (International) on Combustion, The Combustion Institute, Italy, 2117-2124, 1996
  20. Montgomery CJ, Swensen DA, Harding TV, Cremer MA, Bockelie MJ, Adv. Eng. Software, 33, 59, 2002
  21. Skjoth-Rasmussen MS, Holm-Christensen O, Ostberg M, Christensen TS, Johannessen T, Jensen AD, Glarborg P, Livbjerg H, Comput. Chem. Eng., 28(11), 2351, 2004
  22. Launder BE, Spalding DB, Lectures in Mathematical Models of Turbulence, Academic Press: London, England, 1972