Issue
Korean Chemical Engineering Research,
Vol.47, No.5, 615-619, 2009
Aspen Chromatography에 의한 Troger base의 회분식 크로마토그라피 전산모사
Batch Chromatography Simulation of Troger base by Aspen Chromatography
Troger’s base 중 (+)-Troger’s base는 항혈전제로 Thromboxane A2(T×A2) Synthase의 효소 활성을 저해하여 동맥경화의 치료제로 널리 사용되고 있다. 따라서 (+)-Troger’s base를 라세미 혼합물로부터 순수하게 분리하는 것은 중요한 연구대상이다. 하지만 실험을 통한 (+)-Troger’s base의 순수한 분리에는 많은 시간과 비용이 필요하게 되므로 분리 효율의 향상에 많은 어려움이 있다. 이러한 단점을 보완하고자 Aspen Chromatography 전산 모사는 여러 조건하에서 직접 실험을 하지 않는 효율적인 시뮬레이션 방법으로서 분리 효율 등을 예측할 수 있으므로 생산성 향상에 드는 시간과 비용을 절약할 수 있다. Aspen Chromatography simulator로 Troger’s base의 주입량과 이동상 속도를 변화시켜 TB(-)와 TB(+)의 분리도, 수율 그리고 다양한 흡착식을 비교하였다. TB(-)와 TB(+)의 분리도와 순수한 수율은 이동상 속도 0.25 mL/min일 때 가장 높았다. 고정상과 이동상 농도사이의 관계식을 표시하는 등온흡착식을 변화하여 전산모사한 결과 Ideal Adsorbed Solution(IAS) Statistical Langmuir 등온흡착식이 분리 효율에 좋은 결과를 가져왔다.
(+)-Troger’s base in Troger’s base racemates that inhibits thromboxane A2(T×A2) synthase has been used to treat arteriosclerosis. Separation of (+)-Troger’s base by chromatography has become a major concern. However separation experiments of (+)-Troger’s base need time and consumables so that simulation with Aspen Chromatography could save time and costs by predicting the efficiency of separation. Injection amount and eluent flow rate were varied to compare the resolutions and yields of TB(-) and TB(+). Highest resolution and yield were attained at the eluent rate of 0.25 mL/min. Isotherms representing the relationship between mobile phase concentration and stationary phase concentration were changed to get the best separation with Ideal Adsorbed Solution(IAS) Statistical Lanmuir isotherms.
[References]
  1. Hyun MH, Minumsa, Seoul, 1996
  2. Boisvert J, Caille G, McGilveray IJ, Qureshi SA, J. Chromatogr. B, 690, 189, 1997
  3. Vardelle E, Agnes MM, Jouannetaud MP, Jacquesy JC, Jerome M, Tetrahedron Lett, 50, 1093, 2009
  4. Bailly C, Laine W, Demeunynck M, Lhomme J, Biochem. Biophys. Res. Commun., 273(2), 681, 2000
  5. Mihlbachler K, Seidel-Morgenstern A, Guiochon G, AIChE J., 50(3), 611, 2004
  6. Jacobson S, Seidel-Morgenstern A, Guiochon G, J. Chromatogr., 13, 637, 1993
  7. Pedeferri M, Zenoni G, Mazzotti M, Morbidelli M, Chem. Eng. Sci., 54(17), 3735, 1999
  8. Lee SM, Yoon TH, Kim IH, Clean Technol., 9(2), 81, 2003
  9. Kim BL, Kim JM, Kim WS, Kim IH, Korean Chem. Eng. Res., 46(4), 681, 2008