Issue
Korean Chemical Engineering Research,
Vol.47, No.5, 608-614, 2009
루테늄이 치환된 SBA-15(Ru-SBA-15)의 질소 및 산소 흡착 거동
Nitrogen and Oxygen Sorption Behaviors of Ruthenium-Substituted SBA 15(Ru-SBA-15)
본 연구에서는, 비이온성 삼원공중합체 계면활성제인 EO20PO70EO20를 주형으로 사용해, 다양한 Si/Ru 몰 비의 루테늄이 치환된 SBA-15들(Ru-SBA-15)을 합성하였다. 촉매 또는 선택적 흡착제 등으로써의 응용가능성을 검토하기 위해 Ru-SBA-15의 질소 또는 산소 흡착/탈착 거동을 조사하였다. Ru-SBA-15의 기공 크기는 Barrett-Joyner-Halenda(BJH) 및 Broekhoff-de Boer/Frenkel-Halsey-Hill isotherm(BdB-FHH) 방법(D(BdB-FHH))을 이용하여 결정하였다. Si/Ru 비율이 50/1인 Ru-SBA 15의 D(BJH)와 D(Bdb-FHH)는 각각 3.9, 4.7 nm였다. 투과전자현미경(TEM) 관찰에 의해 Si/Ru의 몰비율이 50인 Ru-SBA 15의 기공 크기는 4.7 nm로 나타났고, 이것은 BdB-FHH 방법을 사용한 N2 흡착 결과와 일치하였다. 산소 흡착/탈착 등온선으로부터 얻은 Brunauer-Emmett-Teller(BET) 기공 표면적은 질소의 흡착/탈착 등온선으로부터의 기공 표면적보다 높았는데, 각각 612.7 m2/g, 그리고 573.3 m2/g이었다. X선 회절(XRD) 패턴과 TEM 분석에 의해 본 연구에서 합성한 Ru-SBA-15는 잘 정렬된 육방정계 정렬을 가지는 것을 알 수 있었다.
In this work, ruthenium substituted SBA-15’s(Ru-SBA15’s) of various Si/Ru ratios were prepared using a non-ionic triblock copolymer surfactant, EO20PO70EO20, as template. We investigated the nitrogen or oxygen adsorption/desorption behaviors of the Ru-SBA-15’s for their future applications as catalysts or selective adsorbents, etc. The pore size of the Ru-SBA-15’s was determined by both the Barrett-Joyner-Halenda(BJH)(D(BJH)) and the Broekhoff-de Boer analysis with a Frenkel-Halsey-Hill isotherm(BdB-FFF) method(D(BdB-FHH)). The D(BJH) and D(BdB-FHH) of the Ru-SBA-15 having 50/1 ratio of Si/Ru were 3.9 nm and 4.7 nm, respectively. The transmission electron microscope(TEM) image of the Ru-SBA 15 of the Si/Ru mole ratio of 50 showed that the pore size is 4.7 nm, which is consistent with the N2 adsorption results with the BdB-FHH method. The surface area of pores form oxygen adsorption/desorption isotherm was higher than that from the nitrogen adsorption/desorption isotherm by the Brunauer-Emmett-Teller(BET) method, which were respectively 612.7 m2/g, and 573.3 m2/g. X-ray diffraction(XRD) patterns and TEM analyses showed that the mesoporous materials possess well-ordered hexagonal arrays.
[References]
  1. Liu AM, Hidajat K, Kawi S, Zhao DY, Chem. Commun, 1145, 2000
  2. Feng X, Fryxell GE, Wang LQ, Kim AY, Liu J, Kemner KM, Science, 276(5314), 923, 1997
  3. Luan Z, Bae JY, Kevan L, Chem.Mater., 12, 3202, 2000
  4. Mercier L, Pinnavaia TJ, Adv. Mater., 9(6), 500, 1997
  5. Moller K, Bein T, Chem. Mater., 10, 2950, 1998
  6. Fowler CE, Lebeau B, Mann S, Chem. Commun., 1825, 1998
  7. Lim MH, Blanford CF, Stein A, J. Am. Chem. Soc., 119(17), 4090, 1997
  8. Oh J, Imail H, Hirashima H, Chem. Mater., 10, 1582, 1998
  9. Wu CG, Bein T, Science, 264(5166), 1757, 1994
  10. Wu CG, Bein T, Science, 266(5187), 1013, 1994
  11. Honma I, Zhou HS, Adv. Mater., 10(18), 1532, 1998
  12. Zhao DY, Feng JL, Huo QS, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD, Science, 279(5350), 548, 1998
  13. Balogh M, Laszlo P, Springer-Verlag, Berlin, pp. 77, 1993
  14. Shelef M, Gandhi HS, Ind. Eng. Chem., Pro. Res. Dev., 11, 393, 1972
  15. Nijs H, Jacobs PA, Uytterhoeven JB, J. Chem. Soc. Chem. Commun., 180, 1979
  16. Pecoraro TA, Chianelli RR, J. Catal., 67, 430, 1981
  17. Mitchell PCH, Scott CE, Bonnelle JP, Grimblot JG, J. Catal., 107, 482, 1987
  18. Kuo YJ, Cocco RA, Tatarchuk BJ, J. Catal., 112, 250, 1988
  19. Kuo YJ, Tatarchuk BJ, J. Catal., 112, 229, 1988
  20. Vannice MA, Catal, Rev-Sci. Eng., 14, 153, 1976
  21. Vannice MA, J. Catal., 44, 152, 1976
  22. Lam YL, Sinfelt JH, J. Catal., 42, 319, 1976
  23. Dalla Betta RA, J. Phys. Chem., 79, 2519, 1975
  24. Yang CH, Goodwin JG, React. Kinet. Catal. Lett., 20, 13, 1982
  25. Sayari A, Wang HT, Goodwin JG, J. Catal., 93, 368, 1985
  26. Cui X, Zin WC, Cho WJ, Ha CS, Mater. Lett., 59, 2257, 2005
  27. Newalkar BL, Olanrewaju J, Komarneni S, Chem. Mater., 13, 552, 2001
  28. Kim MY, Jung SB, Kim MG, Yuo JS, Park JH, Shin CH, Seo G, Cat. Lett., 129, 194, 2009
  29. Kim MY, You YS, Han HS, Seo G, Catal. Lett., 120(1-2), 40, 2008
  30. Barrett EP, Joyner LG, Halenda PP, J. Am.Chem. Soc., 73, 373, 1951
  31. Sing KSW, Everett DH, Haul RAW, Moscow L, Pierotti RA, Rouquerol J, Siemieniewska T, Pure Appl. Chem., 57, 603, 1985
  32. Gregg SJ, Sing KSW, Adsorption, Surface Area and Porosity, Academic Press, London, pp. 2-120, 1982
  33. Brunauer S, Emmett PH, Teller E, J. Am. Chem. Soc., 60, 309, 1938
  34. Langmuir I, J. Am. Chem.Soc., 38, 2221, 1916
  35. Defay R, Prigogine I, Bellemans A, Everett DH, Longmans, London, pp. 218, 1970
  36. Luan Z, Maes EM, Van der Heide PAW, Zhao D, Zernuszewicz RS, Keven L, Chem. Mater., 11, 3680, 1999
  37. Broekhoff JCP, de Boer JH, J. Catal., 9, 8, 1967
  38. Broekhoff JCP, de Boer JH, J. Catal., 9, 15, 1967
  39. Ravikovitch PI, Wei D, Chueh WT, Haller GL, Neimark AV, J. Phys. Chem. B, 101(19), 3671, 1997
  40. Kruk M, Jaroniec M, Sayari A, In Proceedings of the 12th International Zeolite Conference; edited by Treacy MJ, Marcus BK, Bisher ME, Higgins JE, Materials Research Society, Warrendale, PA, pp. 761-766, 1999
  41. Lukens WW, Schmidt-Winkel P, Zhao DY, Feng JL, Stucky GD, Langmuir, 15(16), 5403, 1999
  42. Kruk M, Jaroniec M, Kim JH, Ryoo R, Langmuir, 15(16), 5279, 1999
  43. Aronson BJ, Blanford CF, Stein A, J. Phys. Chem. B, 104(3), 449, 2000
  44. Gomez S, Giraldo O, Garces LJ, Villegas J, Suib SL, Chem. Mater., 16, 2411, 2007
  45. Wahab MA, Ha CS, J. Mater. Chem., 15, 508, 2005
  46. Shen SC, Kawi S, Langmuir, 18(12), 4720, 2002
  47. Park JW, Seo G, Appl. Catal. A-Gen., 356, 180, 2009
  48. Hong SB, Seo G, Uh YS, Korean J. Chem. Eng., 15(5), 566, 1998