Issue
Korean Chemical Engineering Research,
Vol.47, No.4, 481-487, 2009
공기-탄산용융염 이상흐름계에서의 흐름영역전이
Flow Regime Transition in Air-Molten Carbonate Salt Two-Phase Flow System
본 연구에서는 기체(공기)-액체(용융탄산염) 이상 흐름계(용융염산화 공정)에서 공기유속(0.05~0.22 m/sec) 및 탄산용융염의 온도(870~970 ℃)가 흐름영역 전이특성에 미치는 영향을 공기 체류량의 drift-flux 및 차압요동의 추계학적 해석을 통하여 규명하였다. 흐름영역이 시작되는 공기 체류량값은 공기체류량-drift flux 그래프를 통하여 구하였다. 흐름영역 전이가 시작되는 공기 체류량 값은 탄산용융염의 온도가 증가함에 따라서 증가하였는데 이는 탄산용융염의 온도가 증가함에 따라서 액상의 점도와 표면장력의 감소로 인한 계의 안정화 때문이며 계의 특성에 가장 큰 영향을 미치는 기포특성(평균기포크기 및 상승속도)을 drift-flux 모델식을 적용하여 추정하였다. 흐름영역전이 특성을 좀 더 정량적으로 특성화하기 위하여 차압요동신호를 상공간투영 및 Kolmogorov entropy를 이용하여 해석하였다. Kolmogorov entropy는 탄산용융염의 온도가 증가함에 따라 감소하였으며 공기유속이 증가함에 따라서 증가하였으나 흐름영역에 따라서 다른 경향성을 나타내었고 흐름영역이 시작되는 공기유속값은 공기체류량의 drift-flux 해석으로 유도된 결과와 동일하였다.
In this of study, effects of input air velocity(0.05~0.22 m/sec) and molten carbonate salt temperature (870~970 ℃) on flow regime transition have been studied by adopting a drift-flux model of air holdup and a stochastic analysis of differential pressure fluctuations in an air-molten sodium carbonate salt two-phase system(molten salt oxidation process). Air holdup where the flow regime transition begins was determined by air holdup-drift flux plot. The air holdup value which the flow regime transition begins was increased with increasing molten carbonate salt temperature due to the decrease of viscosity and surface tension of molten carbonate salt. To characterize the flow regime transition more quantitatively, differential pressure fluctuation signals have been analyzed by adopting the stochastic method such as phase space portraits and Kolmogorov entropy, The Kolmogorov entropy decreased with an increasing of molten carbonate salt temperature but increased gradually with an increase in an air velocity, however, it exhibited different tendency with the flow regime and the air velocity value which flow regime transition begins was same to the results of drift-flux analysis.
[References]
  1. Kang Y, Woo KJ, Cho YJ, Song PS, Ko MH, Kim SD, HWAHAK KONGHAK, 35(5), 649, 1997
  2. Kang Y, Cho YJ, Woo KJ, Kim KI, Kim SD, Chem. Eng. Sci., 55(2), 411, 2000
  3. Hsu PC, Foster KG, Ford TD, Wallman PH, Watkins BE, Pruneda CO, Adamson MG, Waste Manage., 20, 363, 2000
  4. Hsu PC, Foster KG, Ford TD, Wallman PH, Watkins BE, Pruneda CO, Adamson MG, Waste Manage., 20, 363, 2000
  5. Kang Y, Lee IK, Shin IS, Son SM, Kim SD, Jung H, Korean Chem. Eng. Res., 46(3), 451, 2008
  6. Ribeiro CP, Chem. Eng. J., 140, 473, 2008
  7. Wallis GB, One-Dimensional Two-Phase Flow, McGraw-Hill, New York, 1969
  8. Zuber N, Findlay JA, J. Heat Transfer Trans., C87, 453, 1965
  9. Masliyah JH, Chem. Eng. Sci., 34, 1166, 1979
  10. Son SM, Shin IS, Kang Y, Cho YJ, Yang HC, Korean Chem. Eng. Res., 46(1), 56, 2008
  11. Ruzicka MC, Drahos J, Mena PC, Teixeira JA, Chem. Eng. J., 96(1-3), 15, 2003
  12. Pohorecki R, Moniuk W, Zdrojkowski A, Bielski P, Chem. Eng. Sci., 56(3), 1167, 2001
  13. Kantarci N, Borak F, Ulgen KO, Proc. Biochem., 40, 2263, 2005
  14. Banisi S, Finch JA, Miner. Eng., 7, 1555, 1994
  15. ITYOKUMBUL MT, SALAMA AIA, ALTAWEEL AM, Miner. Eng., 8(1), 77, 1995
  16. Zou R, Jiang X, Li B, Zu Y, Zhang L, Ind. Eng. Chem. Res., 27, 1910, 1988