Issue
Korean Chemical Engineering Research,
Vol.47, No.4, 418-423, 2009
탄소 나노튜브가 도입된 정공 주입층에 의한 유기발광다이오드의 성능 특성 연구
Performance Characteristics of Organic Electroluminescence Diode Using a Carbon Nanotube-Doped Hole Injection Layer
유기발광다이오드(OLED)에서 정공 주입층(hole injection layer, HIL)으로 사용되는 poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate)(PEDOT:PSS)에 관능성기가 치환된 MWCNT(multi-wall carbon nanotube)를 도입하여 PEDOT: PSS-MWCNT 나노 복합재 박막을 제조하였다. PEDOT:PSS-MWCNT 박막 층은 ITO 유리 위에 스핀 코팅되어 제조하였으며 FT-IR과 UV-Vis 및 SEM을 이용하여 박막의 투과도 및 개질된 MWCNT 함량에 따른 박막의 모폴로지 특성을 관찰하였다. 또한, ITO/PEDOT:PSS-MWCNT/NPD/Alq3/Al 다층 소자를 제조하여 J-V 및 L-V 특성을 고찰하였다. 산 처리에 의해 관능성기가 도입된 MWCNT는 PEDOT:PSS 용액 내에서 분산성이 확인되었으며, 제조된 박막은 우수한 투과도 특성을 보였다. 다층 소자 특성에서 PEDOT:PSS 층에 개질된 MWCNT 도입으로 MWCNT의 함량이 증가함에 따라 다층 소자의 전류 밀도가 증가됨을 확인하였고, 반면에 소자의 휘도는 급격히 감소하는 특성을 보였다. 이것은 MWCNT에 의하여 전하 이동은 수월하게 하였으나 MWCNT가 가지는 정공을 가두는 성질에 의해 정공 이동도가 저하되었기 때문인 것으로 판단된다.
MWCNT(multi-wall carbon nanotube)-doped PEDOT:PSS(poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)), used as a HIL(hole injection layer) material in OLEDs(organic light emitting diodes), was spin-coated on to the ITO glass to form PEDOT:PSS-MWCNT nano composite thin film. Morphology and transparency characteristics of nano composite thin films with respect to the loading percent of MWCNT have been investigated using FT-IR, UV-Vis and SEM. Furthermore, ITO/PEDOT:PSS-MWCNT/NPD/Alq3/Al devices were fabricated, and then J-V and L-V characteristics were investigated. Functional group-incorporated MWCNT was prepared by acid treatment and showed good dispersion property in PEDOT:PSS solution. PEDOT:PSS-MWCNT thin films possessed good transparency property. For multi-layered devices, it was shown that as the loading percent of MWCNT increased, the current density increased but the luminance dramatically decreased. It might be conclusively suggested that the enhanced charge mobility by MWCNT could increase the current density but the hole trapping property of MWCNT could dramatically decrease the hole mobility in the current devices.
[References]
  1. Tang CW, VanSlyke SA, Appl. Phys. Lett., 51, 913, 1987
  2. Shaheen SE, Brabec CJ, Sariciftci NS, Appl. Phys. Lett., 78, 841, 2001
  3. Schultes SM, Sullivan P, Heutz S, Sanderson BM, Jones TS, Mat. Sci. Eng. C, 25, 858, 2005
  4. Drechsel J, Mannig B, Kozlowski F, Gebeyehu D, Werner A, Koch M, Leo K, Pfeiffer M, Thin Solid Films, 451, 515, 2004
  5. Gebeyehu D, Maennig B, Drechsel J, Leo K, Pfeiffer M, Sol. Energy Mater. Sol. Cells, 79, 81, 2003
  6. Tripathi V, Datta D, Samal GS, J. Non-Cryst. Sol., 354, 2901, 2008
  7. Xue J, Rand BP, Uchida S, Forrest SR, Appl. Phys. Lett., 98, 124903, 2005
  8. Hadziioannou G, van Hutten PF, Semiconducting Polymers: Chemistry, Physics and Engineering, WILEY-VCH Verlag GmbH, Weinhein, Germany, 2000
  9. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ, Science, 270(5243), 1789, 1995
  10. Peumans P, Bulovic V, Forrest SR, Appl. Phys. Lett., 76, 2650, 2000
  11. Burn PL, Bradley DDC, Friend RH, Halliday DA. Holmes AB, Jackson RW, Kraft A, J. Chem. Soc., 1, 3225, 1992
  12. Askari SH, Rughooputh SD, Wudl F, Synth. Met., 29, 129, 1989
  13. Brandon KL, Bently PG, Bradley DDC, Dunmur DA, Synth. Met., 91, 305, 1997
  14. Jung ES, Cho EH, Chung PJ, J. Korean Ind. Eng. Chem., 9(4), 548, 1998
  15. Yu HY, Feng XD, Grozea D, Lu ZH, Sodhi RNS, Hor AM, Appl. Phys. Lett., 78, 2595, 2001
  16. Liu G, Kerr JB, Johnson S, Syn. Met., 144, 1, 2004
  17. Ohta H, Orita M, Hirano M, Hosono H, J. Appl. Phys., 91, 3547, 2002
  18. Leterrier Y, Medico L, Demarco F, Manson JAE, Betz U, Escola MF, et al., Thin Sol Films., 460, 1156, 2004
  19. Aernouts T, Vanlaeke P, Geens W, Poortmans J, Heremans P, Borghs S, et al., Thin Sol Films., 451, 22, 2004
  20. Carter SA, Scott JC, Brock PJ, Appl. Phys. Lett., 71, 1145, 1997
  21. Xiao BW, Shang YF, Meng M, Li CN, Microelectr., 36, 105, 2005
  22. Li FS, Chen ZJ, Liu CL, Gong QH, Chem. Phys. Lett., 412(4-6), 331, 2005
  23. Chan IM, Hong FC, Thin Solid Films, 450(2), 304, 2004
  24. Xue JG, Rand BP, Uchida S, Forrest SR, Adv. Mater., 17(1), 66, 2005
  25. Oey CC, Djurisic AB, Kwong CY, Cheung CH, Chan WK, Nunzi JM, Chui PC, Thin Solid Films, 492(1-2), 253, 2005
  26. Yuan YY, Han S, Grozea D, Lu ZH, Appl. Phys. Lett., 88, 093503, 2006
  27. Wang GF, TaO XM, Wang RX, Compos. Sci. Technol., 68, 2837, 2008
  28. Hirsch A, Angew. Chem. Int. Ed., 41, 1853, 2002
  29. Tasis D, Tagmatarchis N, Georgakilas V, Prato M, Chem. -Eur. J., 9, 4000, 2003
  30. Banerjee S, Kahn MGC, Wong SS, Chem. -Eur. J., 9, 1898, 2003
  31. Chen J, Hamon MA, Hu H, et al., Sci., 282, 95, 1998
  32. Shaffer MSP, Fan X, Windle AH, Carbon, 36, 1603, 1998
  33. Woo HS, Czerw R, Webster S, Carroll DL, Appl. Phys. Lett., 77, 1393, 2000