Issue
Korean Chemical Engineering Research,
Vol.47, No.3, 380-385, 2009
2-Amino-2-Methyl-1-Propanol이 용해한 극성 용매에서 이산화탄소의 흡수
Absorption of Carbon Dioxide into Polar Solvents of 2-Amino-2-Methyl-1-Propanol
평판형 교반기를 사용하여 2-amino-2-methyl-1-propanol(AMP)가 용해된 methanol, ethanol, n-propanol, n-butanol, ethylene glycol, propylene glycol, 및 propylene carbonate와 같은 극성 용매에서 이산화탄소(CO2)의 흡수속도를 측정하였다. CO2의 흡수속도와 carbamate 생성 반응 메커니즘을 사용하여 기-액 불균일반응계의 빠른 반응영역에서 CO2-AMP의 반응속도론을 해석하였으며 용매의 용해도 매개변수와 반응속도상수와의 상관관계를 제시하였다.
The absorption rate of carbon dioxide with 2-amino-2-methyl-1-propanol(AMP) was measured in such non-aqueous solvents as methanol, ethanol, n-propanol, n-butanol, ethylene glycol, propylene glycol, and propylene carbonate, and in water at 298 K and 101.3 kPa using a semi-batch stirred tank with a plane gas-liquid interface. The overall reaction rate constant, obtained under the condition of fast reaction regime, from the measured rate of absorption was used to get the elementary reaction rate constants in complicated reactions represented by reaction mechanism of carbamate formation and the order of overall reaction of CO2 with amine. The correlation between the elementary reaction rate constant and the solubility parameter of the solvent was also presented.
[References]
  1. Astarita G, Savage DW, Bisio A, Gas Treating with Chemical Solvents, John Wiley & Sons, New York, 1983
  2. Danckwerts PV, Sharma SS, Chem. Eng., October, 244, 1966
  3. Danckwerts PV, Chem. Eng. Sci., 34, 443, 1979
  4. Blanc CC, Demarais G, Inter. Chem. Eng., 24, 43, 1984
  5. Little RJ, van Swaaij WPM, Versteeg G, AIChE. J., 36, 1633, 1990
  6. Xu S, Wang YW, Otto FD, Mather AE, Chem. Eng. Sci., 51, 84, 1996
  7. Saha AK, Biswas AK, Bandyopadhyay SS, Sep. Purif. Technol., 15(2), 101, 1999
  8. Mandal BP, Guha M, Biswas AK, Bandyopadhyay SS, Chem. Eng. Sci., 56(21-22), 6217, 2001
  9. Mandala BP, Biswas AK, Bandyopadhyay SS, Chem. Eng. Sci., 58(18), 4137, 2003
  10. Samanta A, Bandyopadhyay SS, Chem. Eng. Sci., 64, 1185, 2009
  11. Alvarez-Fuster C, Midoux N, Laurent A, Charpenter JC, Chem. Eng. Sci., 36, 1513, 1981
  12. Sada E, Kumazawa H, Han ZQ, Matsuyama H, AIChE. J., 31, 1297, 1985
  13. Versteeg GF, van Swaaij WPM, Chem. Eng. Sci., 43, 573, 1988
  14. Pohorecki R, Mozenski C, Chem. Eng. Process., 37(1), 69, 1998
  15. Davis RA, Sandall OC, Chem. Eng. Sci., 48, 3187, 1993
  16. Hua LQ, Shuo Y, Lin TJ, Sep. Purif. Technol., 16(2), 133, 1999
  17. Ali SH, Merchant SQ, Fahim MA, Sep. Purif. Technol., 18(3), 163, 2000
  18. Daraiswany LK, Sharma MM, Heterogeneous Reaction: Analysis, Example and Reactor Design, John Wiley & Sons, New York, 1984
  19. Park SW, Lee JW, Choi BS, Lee JW, J. Ind. Eng. Chem., 11(2), 202, 2005
  20. Park SW, Lee JW, Choi BS, Lee JW, Sep. Sci. Technol., 40(9), 1885, 2005
  21. Park SW, Choi BS, Lee JW, Korean J. Chem. Eng., 23(1), 138, 2006
  22. Park SW, Lee JW, Choi BS, Lee JW, Korean J. Chem. Eng., 23(5), 806, 2006
  23. Caplow M, J. Am. Chem. Soc., 90, 6795, 1968
  24. Shen KP, Li MH, Yih SM, Ind. Eng. Chem. Res., 30, 1811, 1991
  25. Malcolm LK, Axel M, J. Chem. Eng. Data, 29, 309, 1984
  26. Danckwerts PV, Gas-Liquid Reactions, McGraw-Hill Book Co., New York, 1970
  27. Weast R, Astle MJ, CRC Handbook of Chemistry and Physics, E56-E59, CRC Press, Inc. Florida, 1979
  28. Brandrup J, Immergut JE, Polymer Handbook, Second Ed., John Wiley & Sons, New York, 1975
  29. Herbrandson HF, Neufeld FR, J. Org. Chem., 31, 1140, 1966
  30. Morrison RT, Boyd RN, Organic Chemistry, Fourth Ed., Allyn and Bacon, Inc., Toronto, 1983