Issue
Korean Chemical Engineering Research,
Vol.47, No.3, 373-379, 2009
세슘카보네이트에서 이산화탄소의 수착반응
Sorption Analysis of Carbon Dioxide onto Cesium Carbonate
고정층 반응기에서 cesium carbonate 흡착제를 사용하여 이산화탄소(CO2), 질소 및 수분의 혼합기체로부터 CO2를 수착하여 CO2-cesium carbonate의 반응속도론을 구하기 위하여 CO2의 파과곡선을 측정하였다. 비촉매 불균일반응계에서 반응속도론을 해석하기 위하여 CO2의 파과곡선을 사용하여 비활성화 모델로부터 반응속도론을 구하고 CO2의 파과곡선의 비선형해석으로부터 비활성화 모델에서 수착속도상수와 비활성속도상수를 구하였다.
Cesium carbonate was used as an adsorbent to capture carbon dioxide from gaseous stream of carbon dioxide, nitrogen, and moisture in a fixed-bed to obtain the breakthrough data of CO2. The deactivation model in the non-catalytic heterogeneous reaction systems is used to analyze the sorption kinetics among carbon dioxide, carbonate, and moisture using the experimental breakthrough data. The experimental breakthrough data are fitted very well to the deactivation model than the adsorption isotherm models in the literature.
[References]
  1. Aresta M, Carbon Dioxide Recovery and Utilization, Kluwer Academic Pub., Boston, 2003
  2. Fuchs W, Syosett NT, “Method of Removing Carbon Dioxide and Water from Air,” U. S. Patent, 3,511,595, 1970
  3. Gidaspow D, Onischak M, “Process for Regenerative Sorption of CO2,” U. S. Patent, 3,865,924, 1975
  4. Hirano S, Shigomoto N, Yamada S, Hayashi H, Bull. Chem. Soc., Jpn., 68, 1030, 1995
  5. Hayashi H, Taniuchi J, Furuyashiki N, Sugiyama S, Hirano S, Shigemoto N, Nonaka T, Ind. Eng. Chem. Res., 37(1), 185, 1998
  6. Shigemoto N, Yanagihara T, Sugiyama S, Hayashi H, J. Chem. Eng. Jpn., 38(9), 711, 2005
  7. Okunev AG, Sharnov VE, Aristov YI, Parmon VN, React. Kinet. Catal. Lett., 71, 355, 2004
  8. Ball MC, Strachan AN, Strachan RM, J. Chem. Faraday Trans., 87, 1911, 1991
  9. Ball MC, Clarke RA, Strachan AN, J. Chem. Faraday Trans., 87, 3683, 1991
  10. Ball MC, Snelling CM, Strachan AN, Strachan RM, J. Chem. Faraday Trans., 88, 631, 1992
  11. Park SW, Sung DH, Choi BS, Lee JW, Kumazawa H, J. Ind. Eng. Chem., 12(4), 522, 2006
  12. Park SW, Choi BS, Lee JW, Sep. Sci. Technol., 42(10), 2221, 2007
  13. Hoffman JS, Pennline HW, J. Energy & Environ. Res., 1, 90, 2001
  14. Green DA, Turk BS, Gupta RP, McMichael WJ, Harrison DP, Liang Y, Quarterly Technical Progress Report, Louisiana State University, 2003
  15. Doraiswamy LK, Sharma MM, Heterogeneous Reactions, vol.1, John Wiley & Sons, Inc., New York, 1984
  16. Ishida M, Wen CY, AIChE J., 14, 311, 1968
  17. Ramachandran PA, Kulkarni BD, Ind. Eng. Chem. Res. Process Design Develop., 19, 717, 1980
  18. Evans JW, Song S, Ind. Eng. Chem. Process Des. Develop., 13, 146, 1974
  19. Sampath BS, Ramachandran PA, Hughes R, Chem. Eng. Sci., 30, 135, 1975
  20. Ranade MG, Evans JW, Ind. Eng. Chem. Process Des. Develop., 19, 118, 1980
  21. Ruthven DM, Principles of Adsorption and Adsorption Processes, John & Wiley, NewYork, 1984
  22. Suzuki M, Adsorption Engineering, Kodansga Ltd., Tokyo, 1990
  23. Orbey N, Dogu G, Dogu T, Can. J. Chem. Eng., 60, 314, 1982
  24. Yasyerli N, Dogu T, Dogu G, Ar I, Chem. Eng. Sci., 51(11), 2523, 1996