Issue
Korean Chemical Engineering Research,
Vol.47, No.3, 292-302, 2009
균일촉매를 이용한 페놀의 습식산화
Wet Oxidation of Phenol with Homogeneous Catalysts
페놀 습식산화에 미치는 반응온도(150~250 ℃), 산소분압(25.8~75.0 bar) 및 초기 pH(1.0~12.0)의 영향을 10 g/l의 페놀 초기농도를 사용하여 조사하였다. 습식산화속도는 화학적 산소요구량 COD를 이용하여 산출하였으며 반응 중간 생성물들을 고성능액체크로마토그래피를 사용하여 측정하였다. 습식산화 중 페놀 분해속도는 페놀에 대하여 1차 반응 차수를 나타냈으며, COD 변화는 lumped 모델로 잘 묘사할 수 있었다. 금속이온(Cu2+, Fe2+, Zn2+, Co2+, Ce3+) 균일촉매의 습식산화 중 페놀 분해속도 및 COD 제거속도에 미치는 영향도 조사하였다. 페놀 분해속도 및 COD 제거속도는 CuSO4를 사용한 촉매습식산화에서 가장 크게 나타났으며 촉매농도를 증가시킴에 따라 증가하였다. 습식산화 중 생성되는 개미산의 분해속도는 반응온도 및 CuSO4 농도를 증가시킴에 따라 증가하였다. 난분해성 생성물 초산의 최종농도는 반응온도를 증가시킴에 따라 증가하였으나 CuSO4 농도를 증가시킴에 따라 감소하였다.
The wet oxidation of phenol has been investigated at temperatures from 150 to 250 ℃ and oxygen partial pressures from 25.8 to 75.0 bar with initial pH of 1.0 to 12.0 and initial phenol concentration of 10 g/l. Chemical Oxygen Demand COD has bee measured to estimate the oxidation rate. Reaction intermediates have been identified and their concentration profiles have been determined using liquid chromatography. The destruction rate of phenol have shown the first-order kinetics with respect to phenol and the changes in COD during wet oxidation have been described well with the lumped model. The impact of various homogeneous catalysts, such as Cu2+, Fe2+, Zn2+, Co2+, and Ce3+ ions, on the destruction rate of phenol and COD has also been studied. The homogeneous catalyst of CuSO4 has been found to be the most effective for the destruction of phenol and COD during wet oxidations. The destruction rate of formic acid formed during wet oxidations of phenol have increased as increasing temperature and CuSO4 concentration. The final concentrations of acetic acid which has been formed during wet oxidations and difficult to oxidize have increased with reaction temperature and with decrease in the catalyst load.
[References]
  1. Seo IS, Yoon WR, Chem. Ind. Technol., 14(6), 566, 1996
  2. Mishra VS, Mahajani VV, Joshi JB, Ind. Eng. Chem. Res., 34(1), 2, 1995
  3. Luck F, Catal. Today, 53(1), 81, 1999
  4. Imamura S, Ind. Eng. Chem. Res., 38(5), 1743, 1999
  5. Levec J, Pintar A, Catal. Today, 124(3-4), 172, 2007
  6. Li L, Chen P, Gloyna EF, AIChE J., 37, 1687, 1991
  7. Mantzavinos D, Hellenbrand R, Livingston AG, Metcalfe IS, Wat. Sci. Tech., 35, 119, 1997
  8. Rivas FJ, Kolaczkowski ST, Beltran FJ, McLurgh DB, Chem. Eng. Sci., 53(14), 2575, 1998
  9. Shibaeva LV, Matelitsa DI, Reibe DD, Wetzel DM, Harrison DP, Kinet. Catal., 10, 832, 1969
  10. Pruden BB, Le H, Can. J. Chem. Eng., 54, 319, 1976
  11. Helling RK, Strobel MK, Torres RJ, Jolley RL , Ostwald GE, “Kinetics of Wet Oxidation of Biological Sludges from Coal Conversion Wastewater Treatment,” Report OR NL/MIT-332, Oak Ridge National Laboratory, 1981
  12. Baillod CR, Lamporter RA, Barna BA, Chem. Eng. Prog., 3, 52, 1985
  13. Jaulin L, Chornet E, Can. J. Chem. Eng., 65, 64, 1987
  14. Chang CM, Li SS, Ko CM, J. Chem. Technol. Biotechnol., 64(3), 245, 1995
  15. Kolaczkowski ST, Beltran FJ, McLurgh DB, Rivas FJ, Trans. IChemE., 75, 257, 1997
  16. Miguelez JRP, Bernal JL, Sanz EN, de la Ossa EM, Chem. Eng. J., 67, 115, 1997
  17. Shende RV, Mahajani VV, Ind. Eng. Chem. Res., 36(11), 4809, 1997
  18. Gopalan S, Savage PE, AIChE J., 41(8), 1864, 1995
  19. Devlin HR, Harris IJ, Ind. Eng. Chem. Fundam., 23, 387, 1984
  20. Shende RV, Levec J, Ind. Eng. Chem. Res., 39(1), 40, 2000
  21. Willms RS, Balinsky AM, Reible DD, Wetzel DM, Harrison DP, Ind. Eng. Chem. Res., 26, 148, 1987
  22. Santos A, Yustos P, Quintanilla A, Garcia-Ochoa F, Appl. Catal. B: Environ., 53(3), 181, 2004
  23. Mantzavinos D, Hellenbrand R, Livingston AG, Metcalfe IS, Appl. Catal. B: Environ., 7(3-4), 379, 1996