Issue
Korean Chemical Engineering Research,
Vol.47, No.3, 287-291, 2009
전도된 정체점 흐름을 갖는 반응기에서 암모니아의 비균질 분해 반응 연구
Investigation of the Heterogeneous Decomposition of Ammonia in an Inverted, Stagnation-point Flow Reactor
전도된 정체점 흐름을 갖는 반응기 안의 가열된 석영(quartz) 표면에서 암모니아(NH3)가 분해되는 반응을 실험과 수치 모사을 이용하여 조사하였다. 질소(N2)와 혼합된 8 mole%의 암모니아를 사용하였고 반응 표면으로 사용된 석영 표면을 가열하기 위한 전열기의 온도는 300~900 ℃ 범위로 설정하였다. 라만 분광법(in situ Raman spectroscopy)을 이용하여 획득한 반응기 내부의 온도와 암모니아 농도 정보를 반응기 모델을 이용하여 분석한 결과, 전열기의 온도 설정에 의존하는 석영 표면의 온도는 235~619 ℃ 범위였으며 암모니아 분해 반응의 활성화 에너지는 10.9~15.8 kcal/mol 범위를 가졌다.
The heterogeneous decomposition of ammonia on a quartz surface in an inverted, stagnation-point flow reactor was investigated using a measurement reactor and a numerical model of the reactor. In the experiments, 8 mole% of ammonia in nitrogen was used and the temperature of an electric heater was set in the range 300~900 ℃ to heat the quartz surface where the decomposition took place. Gas temperatures and ammonia concentrations in the reactor obtained using in situ Raman spectroscopy were analyzed with the numerical model and it was revealed that, depending on the heater temperature, the temperature of the quartz surface was estimated to be in the range 235~619 ℃ and the activation energy of the decomposition on the surface was in the range 10.9~15.8 kcal/mol.
[References]
  1. Khan MA, Shatalov M, Maruska HP, Wang HM, Kuokstis E, Jpn. J. Appl. Phys., 44, 7191, 2005
  2. Ambacher O, J. Phys. D: Appl. Phys., 31, 2653, 1998
  3. Morkoc H, Mater. Sci. Eng., B43, 137, 1997
  4. Mesrine M, Grandjean N, Massies J, Appl. Phys. Lett., 72, 350, 1998
  5. Davison DF, Kohse-Hoinghaus K, Chang AY, Hanson RK, Int. J. Chem. Kinet., 22, 513, 1990
  6. Dove JE, Nip WS, Can. J. Chem., 57689, 1979
  7. Kim SH, Kim HS, Hwang JS, Choi JG, Chong PJ, Chem. Mater., 6, 278, 1994
  8. Liu SS, Stevenson DA, J. Elcetrochem. Soc., 125, 1161, 1978
  9. Mesrine MN, Grandjean N, Massies J, Appl. Phys. Lett., 72, 350, 1998
  10. Dillon AC, Gupta P, Robinson MB, Bracker AS, George SM, J. Vac. Sci. Technol., A9, 2222, 1991
  11. Gupta P, Colvin VL, George SM, Phys. Rev. B, 37, 8234, 1988
  12. Tamaru K, Acc. Chem. Res., 21, 88, 1988
  13. Park C, Hwang JY, Huang M, Anderson TJ, Thin Solid Films, 409(1), 88, 2002
  14. Hwang JY, Park C, Huang M, Anderson T, J. Electrochem. Soc., 152(5), C334, 2005
  15. Hwang JY, Park C, Jung JH, Anderson TJ, J. Electrochem. Soc., 155, H124, 2008
  16. Mountziaris TJ, Jesen KF, J. Electrochem. Soc., 138, 2426, 1991
  17. Safvi SA, Redwing JM, Tischler MA, Kuech TF, J. Electrochem. Soc., 144(5), 1789, 1997
  18. Hwang JY, “Quantitive Investigation of the Homogeneous Decomposition of Trimethylindium and Ammonia by in situ Raman Spectroscopy,” Ph.D. Dissertation, Ch. 3, University of Florida, Gainesville, Florida, 2004
  19. Hwang JY, Park C, Huang M, Anderson T, J. Cryst. Growth, 279(3-4), 521, 2005