Issue
Korean Chemical Engineering Research,
Vol.46, No.6, 1130-1134, 2008
활성탄에서의 아세트산 흡탈착 거동
Sorption Behavior of Acetic Acid onto Activated Carbons
아세트산은 테레프탈산 제조 공정에서 용매로 사용되며, 사용된 아세트산은 반응 후 증류 공정을 통하여 분리 회수된다. 그러나 소량의 아세트산은 그대로 폐수에 유입되어 버려지는데, 흡착공정을 이용하면 소량의 아세트산을 회수하여 다시 재사용할 수 있다. 본 연구에서는 활성탄을 아세트산 흡착제로 활용하여 상용활성탄의 아세트산 흡착능과 흡착능에 대한 온도 및 흡착제 산처리 효과를 살펴보았다. 활성탄의 아세트산 흡착능은 흡착 키네틱 실험으로 관찰한 결과, 303 K에서는 0.176 mmol/g의 흡착능을 보였으나, 343 K에서는 0.118 mmol/g으로 흡착능이 떨어졌다. 즉, 온도가 증가하면 활성탄의 아세트산 흡착능은 감소하는 결과가 나타났다. 산처리실험에서는 활성탄 표면을 염산 혹은 옥살산으로 처리할 경우, 활성탄의 아세트산 흡착능이 소폭 증가하였다. 이는 산처리로 인해 활성탄 표면에 카르복실산, 혹 은 페놀 수산화기 등 표면 관능기가 증가하였기 때문인 것으로 보인다. 아세트산 탈착 실험에서는 정량분석결과, 흡착된 아세트산의 89% 정도가 탈착되었다.
Acetic acid has been used as a solvent in the process of manufacturing terephthalic acid. Although the used acetic acid has been mainly separated and recovered through the distillation process, adsorption process can be applied to recover a small amount of acetic acid remaining in the stream after the distillation process. In this study, activated carbon was selected as an adsorbent for acetic acid and the effects of temperature and acid treatment on adsorption capacity were investigated. The adsorption capacities of activated carbon for acetic acid were 0.176 mmol/g at 303 K and 0.118 mmol/g at 343 K, respectively. Adsorption capacity decreased with increasing temperature. The acid treatment of the activated carbon induced the increase in adsorption capacity, which was ascribed to increase in surface functional groups such as phenolic hydroxyl groups and carboxilic acid groups on the carbon surface. In the results of acetic acid desorption, 89% of adsorbed acetic acid was desorbed from activated carbon.
[References]
  1. Choi Y, Lee MM, “Method for Treating Wastewater Containing Acetic Acid and Apparatus,” Korean Patent KP10-2000-0068123, Korea(2000)
  2. Lee MM, Lee YE, Choi Y, Lee DW, “Novel Process for Reclaiming Acetic Acid from Wastewater,” Proceedings of APCChe Congress and CHEMECA Australia(2002)
  3. Das D, Gaur V, Verma N, Carbon, 42, 2949, 2004
  4. Ju HS, Lee SI, Lee YS, Ahn HG, Appl. Chem., 4(1), 173, 2000
  5. Li L, Quinlivan PA, Knappe DRU, Carbon, 40, 2085, 2002
  6. Cho SI, “The Effect of Oxygen Functional Group of Carbon Support on Properties of Pt/C and Pt-Cr Catalysis,” Master Thesis, Seoul National University, Seoul(1997)
  7. Ho YS, McKay G, Water Res., 34, 735, 2000
  8. Sparks DL, Kinetics of Soil Chemical Processes, Academic Press Inc., San Diego, CA(1989)
  9. Shin EW, Han JS, Min SH, Environ. Technol., 25, 185, 2004
  10. Reddad Z, Gerente C, Andres Y, Cloirec PL, Environ. Sci. Technol., 36, 2067, 2002
  11. Sharma YC, J. Colloid Interface Sci., 233(2), 265, 2001
  12. Leyva-Ramos R, Rangel-Mendez R, Mendoza-Barron J, Fuentes-Rubio L, Guerrero-Coronade RM, Water Sci. Technol., 35, 205, 1997