Issue
Korean Chemical Engineering Research,
Vol.46, No.6, 1081-1086, 2008
분자 끈을 활용한 CdSe/ZnS 양자 점의 향상된 배열
Molecular Linker Enhanced Assembly of CdSe/ZnS Core-Shell Quantum Dots
양자 점을 이용한 QD-LED(Quantum Dot - Light Emitting Device)의 소자 제작을 하기 위해서는 양자 점의 균일한 배열이 중요하다. 핵-껍질(core-shell) 구조의 CdSe/ZnS 양자 점을 기판에 고 밀도, 고 균일도로 배열하기 위하여 두 종류의 분자 끈(molecular linker)을 사용하였고, 공정의 단순화와 비용 절감을 위하여 고분자 도장인 PDMS(polydimethylsiloxane)를 이용한 미세접촉인쇄방법으로 양자 점들을 배열하였다. TiO2/ITO 기판에 양자 점을 고정 시켜주는 역할을 하는 분자 끈으로는 2-carboxyethylphosphonic acid(CAPO)를 사용하였고, 양자 점 사이의 인력을 향상시켜주는 분자 끈으로는 1,6-hexanedithiol(HDT)을 사용하였다. 양자 점들의 배열 특성을 주사전자현미경(SEM, scanning electron microscope)과 원자 힘 현미경(AFM, atomic force microscope)으로 분석하였고, 광 발광분광기(PL, photoluminescence spectroscope)로 발광특성을 측정하였다.
QDs-LEDs(quantum dot light emitting device) should contain well-organized arrays of QDs on an electron transport layer. Thin films of CdSe/ZnS core-shell QDs were successfully fabricated on TiO2 substrates by using PDMS stamp and micro contact printing method. 2-Carboxyethylphosphonic acid(CAPO) and 1,6-hexanedithiol(HDT) were employed as molecular linkers in assembling CdSe/ZnS core-shell QDs with high-density and uniform array. The CAPO increased the binding strength between the QDs and the substrates, and the HDT induced the strong inter-particle attractions of assembled QDs. The assembling properties of QDs thin films were characterized by SEM, AFM, optical microscope and photoluminescence spectroscope(PL).
[References]
  1. Kido J, Electroluminescence, Nippon Jitsugyo publishing Co., Ltd.(2003)
  2. Coe S, Woo WK, Bawendi M, Buloviæ V, Nature, 420, 800, 2002
  3. Guyot P, Coe S, Material Matters, 2, 10, 2007
  4. Ivanov SA, Nanda J, Piryatinski A, Achermann M, Balet LP, Bezel IV, Anikeeva PO, Tretiak S, Klimov VI, J. Phys. Chem. B, 108(30), 10625, 2004
  5. Zhong XH, Han MY, Dong ZL, White TJ, Knoll W, J. Am. Chem. Soc., 125(28), 8589, 2003
  6. Zhong X, Xie Y, Zhang Y, Basche T, Knoll W, Chem. Mater., 17, 4038, 2005
  7. Xie RG, Zhong XH, Basche T, Adv. Mater., 17(22), 2741, 2005
  8. Bailey RE, Nie SM, J. Am. Chem. Soc., 125(23), 7100, 2003
  9. Li JJ, Wang YA, Guo WZ, Keay JC, Mishima TD, Johnson MB, Peng XG, J. Am. Chem. Soc., 125(41), 12567, 2003
  10. Zhong XH, Feng YY, Knoll W, Han MY, J. Am. Chem. Soc., 125(44), 13559, 2003
  11. Reiss P, Bleuse J, Pron A, Nano Lett., 2, 871, 2002
  12. Talapin DV, Koeppe R, Gotzinger S, Kornowski A, Lupton JM, Rogach AL, Benson O, Feldmann J, Weller H, Nano Lett., 3, 1677, 2003
  13. Steckel JS, Zimmer JP, Coe S, Stott NE, Bulovic V, Bawendi MG, Angew. Chem. Int. Ed., 43, 2154, 2004
  14. Zhao J, Bardecker JA, Munro AM, Liu MS, Niu Y, Ding IK, Luo J, Chen B, Jen AKY, Ginger DS, Nano Lett., 6, 463, 2006
  15. Xia Y, Whitesides GM, Angew. Chem. Int. Ed., 37, 550, 1998
  16. Xia Y, Whitesides GM, Annu. Rev. Mater. Sci., 28, 153, 1998
  17. Geissler M, Xia YN, Adv. Mater., 16(15), 1249, 2004
  18. Coe-Sullivan S, Steckel JS, Woo WK, Bawendi MG, Bulovic V, Adv. Funct. Mater., 15(7), 1117, 2005
  19. Coe-Sullivan S, Steckel JS, Kim LA, Bawendi MG, Buloviæ V, Proc. SPIE-Int. Soc. Opt. Eng., 5739, 108, 2005
  20. Han L, Maye M, Leibowitz FL, Nam KL, Zhong CJ, J. Mater. Chem., 11, 1258, 2001
  21. Wang GR, Wang L, Rendeng Q, Wang J, Luo J, Zhong CJ, J. Mater. Chem., 17, 457, 2007
  22. Wang LY, Shi XJ, Kariuki NN, Schadt M, Wang GR, Rendeng Q, Choi J, Luo J, Lu S, Zhong CJ, J. Am. Chem. Soc., 129(7), 2161, 2007