Issue
Korean Chemical Engineering Research,
Vol.46, No.6, 1069-1074, 2008
Thiol기의 화학흡착을 이용한 구리 나노입자의 제조
Preparation of Copper Nanoparticles Protected by Chemisorption via Thiol Group
구리 나노입자의 표면에 화학흡착한 octanethiol, decanethiol 및 dodecanethiol의 3D SAMs를 연구하였고, dodecanethiol의 투입량 변화에 따른 구리 나노입자의 산화 안정성을 고찰하였다. 제조 공정은 산소로부터 보호하기 위해 질소 분위기에서 수행하였고, 합성된 입자는 원심분리를 통하여 획득하였다. 구리 전구체는 Copper(II) nitrate, 환원제는 sodium borohydride를 사용하였으며, 반응은 단일상에서 진행하였다. 나노 크기의 구리입자는 TEM 분석을 통하여 확인하였고, 그 크기는 약 3~6 nm였다. FT-IR, XPS와 열중량분석(TGA) 결과 alkanethiol의 thiol기가 구리 표면에 화학흡착 한다는 것과 alkyl기의 사슬이 길수록 alkanethiol의 흡착양이 증가한다는 것을 확인하였고, XRD 패턴으로부터 구리 나노입자의 거대격자회절(superlattice diffraction)을 관측할 수 있었다. 그리고 dodecanethiol의 투입양이 구리의 투입양보다 적을 경우 구리는 Cu2O의 형태로 산화되었으며, 구리보다 1.25배 많이 투입할 경우 더욱 조밀한 SAMs를 형성하였다.
In this work, we made a study for the 3D SAM formation of octanethiol, decanethiol, and dodecanethiol on copper nanoparticles and we verified stability of the copper particle depending on the ratio of dodecanethiol to copper. The reaction was performed in a one-phase system under nitrogen atmosphere and the thiolated copper particles could be obtained by centrifugation. We could confirm that the nanoparticles consisted of a spherical shape of 3~6 nm from TEM images. FT-IR, XPS and TGA results showed that alkanethiols were chemisorbed via thiol group and the packing density of the alkanethiols on copper surface increased with the alkyl chain lengths. XRD patterns gave us useful information about superlattice formations. Finally, Cu2O was formed when the molar ratio of dodecanethiol to copper is less than unity and copper nanoparticles formed more compact 3D SAMs when the molar ratio of dodecanethiol to copper was 1.25.
[References]
  1. Chen L, Zhang D, Chen J, Zhou H, Wan H, Mater. Sci. Eng., A, 415, 156, 2006
  2. Chen TY, Chen SF, Sheu HS, Yeh CS, J. Phys. Chem. B, 106(38), 9717, 2002
  3. Casella IG, Cataldi TRI, Guerrieri A, Desimoni E, Anal. Chem. Acta., 335, 217, 1996
  4. Ang TP, Wee TSA, Chin WS, J. Phys. Chem. B, 108(30), 11001, 2004
  5. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R, J. Chem. Soc., Chem. Cummun., 801, 1994
  6. Porter MD, Bright TB, Allara DL, Chidsey CED, J. Am. Chem. Soc., 109, 3559, 1987
  7. Ulman A, Eilers JE, Tillman N, Langmuir, 5, 1147, 1989
  8. Laibinis PE, Whitesides GM, Allara DL, Tao YT, Parikh AN, Nuzzo RG, J. Am. Chem. Soc., 113, 7152, 1991
  9. Hostetler MJ, Stokes JJ, Murray RW, Langmuir, 12(15), 3604, 1996
  10. Murthy S, Bigioni TP, Wang ZL, Khoury JT, Whetten RL, Mater. Lett., 30, 321, 1997
  11. Brundle CR, Evans CA, Wilson S, Encyclopedia of Materials Characterization, Butterworth-Heinemann; Manning, Boston(1992)
  12. Vensebaa F, Zhou Y, Deslandes Y, Kruus E, Ellis TH, Surf. Sci., 405, L472, 1998
  13. Snyder RG, Strauss HL, J. Phys. Chem., 86, 5145, 1982
  14. Synder RG, Maroncelli M, Strauss HL, Hallmark VM, J. Phys. Chem., 90, 5623, 1986
  15. Lee YI, Choi JR, Lee KJ, Stott NE, Kim DH, Nanotechnology, 19, 415604, 2008
  16. Tung CC, Chou YI, Lin PJ, Lin SD, Chen HI, “Preparation of Self-Assembled Alkanethiol-modified Au/GaAs Ethanol Vapor Sensors,” Proceedings(CD-ROM) of 2008 Taiwan/Korea/Japan ChE Conference and 55th TwIChE Annual Conference(2008)