Issue
Korean Chemical Engineering Research,
Vol.46, No.6, 1057-1062, 2008
3 kW급 매체순환식 가스연소기의 고체순환특성
Solid Circulation Characteristics in a 3 kW Chemical-looping Combustor
기존 2탑 유동층 공정의 단점을 극복하기 위해 두 개의 기포유동층, 고체분사노즐, 상승관 및 고체재순환관으로 구성된 신개념 2탑 유동층 공정을 적용한 3 kW 매체순환식 가스연소기를 개발하였다. 본 연구에서는 3 kW급 매체순환식 가스연소기에서 고체순환속도에 미치는 고체분사노즐 유속, 유동화속도, 고체층 높이, 고체유입구의 단면적, 층 온도 등의 영향을 고찰하였다. 고체순환속도는 고체층 높이가 증가하고 고체유입구의 단면적이 증가할수록 증가하는 경향을 나타내었으며 유동화속도와 온도의 영향은 크지 않았다. 장기연속운전 가능성을 검토하기 위해 50시간까지 고체순환 장기연속운전을 실증하였다. 두 유동층과 고체재순환관의 압력강하 값이 안정적으로 유지되어 고체순환이 원활하고 안정적으로 유지되는 것을 확인하였다.
To overcome disadvantages of conventional two interconnected fluidized beds system, a novel two-interconnected fluidized bed process has been adopted to 3kW chemical-looping combustor. This system has two bubbling beds, solid injection nozzles, solid conveying lines, and downcomers. In this study, effects of operating variables such as gas velocity through the solid injection nozzle, fluidizing velocity, solid height, geometry of solid intake hole, bed temperature on solid circulation rate have been investigated in a 3kW chemical-looping combustor. The solid circulation rate increased as the solid height and the opening area of solid intake holes increased. The effect of the fluidizing velocity and the bed temperature were negligible. Moreover, long-term operation of continuous solid circulation up to 50 hours has been performed to check feasibility of stable operation. The pressure drop profiles in the bubbling beds and the downcomers were maintained steadily and solid circulation was smooth and stable.
[References]
  1. Davidson JF, Clift R, Harrison D, Fluidization, 2nd ed., Academic Press, London(1985)
  2. Diego LF, Labiano FG, Gayan P, Cleaya J, Palacios J, Adanez J, Fuel, 86, 1036, 2007
  3. Ryu HJ, Jin GT, Energy Engg. J., 14, 289, 2003
  4. Ryu HJ, Jin GT, Korean J. Chem. Eng., 24(3), 527, 2007
  5. Johansson E, Lyngfelt A, Mattisson T, Johnsson F, Powder Technol., 134(3), 210, 2003
  6. Kronberger B, Johansson E, Loffler G, Mattisson T, Lyngfelt A, Hofbauer H, Chem. Eng. Technol., 27(12), 1318, 2004
  7. Ryu HJ, Trans. of the Korean Hydrogen and New Energy Society, 18, 1, 2007
  8. Ryu HJ, Park YC, Jo SH, Park MH, Korean J. Chem. Eng., 25(5), 1178, 2008
  9. Kunii D, Levenspiel O, Fluidization Engineering, 2nd Ed., Butterworth-Heinemann, MA(1991)
  10. Kunii D, Levenspiel O, Fluidization Engineering, 1st Ed., John Wiley & Sons, Inc., New York(1969)