Issue
Korean Chemical Engineering Research,
Vol.46, No.3, 581-584, 2008
메탄의 부분산화반응으로부터 수소제조를 위한 촉매담체(SPK, SPM) 제조 및 Ru 담지 촉매의 활성도 조사
Catalyst Carriers Preparation and Investigation of Catalytic Activities for Partial Oxidation of Methane to Hydrogen over Ru Impregnated on SPK and SPM Catalysts
중기공성 층상화합물의 촉매 담체를 제조하고, 메탄으로부터 수소를 제조하기 위한 활성도를 평가하기 위해서 고정층 상압 유통식 반응기를 사용하여 Ru(3)/SPK와 Ru(3)/SPM 촉매상에서 메탄의 부분산화반응를 수행하였다. 또한, BET, TEM, TPR를 사용하여 촉매 및 담체의 특성을 분석하였다. 촉매 담체인 실리카 지주 H+-kenyaite(SPK) 와 H+-magadite(SPM)의 BET 비 표면적은 각각 760 m2/g와 810 m2/g 이었고, 평균기공크기는 각각 3.0 nm와 2.6 nm 이었다. N2-흡착등온선은 히스테리시스가 잘 발달된 IV형이었으며, TEM으로 중기공성 층상화합물이 잘 만들어졌음을 확인할 수 있었다. Ru(3)/SPK와 Ru(3)/SPM 촉매는 973 K, CH4/O2=2, 1.25×10-5 g-Cat.hr/ml의 반응조건에서 각각 90%, 87%의 수소의 수율를 얻을 수 있었으며, 약 60시간 까지도 높은 수소 수율을 유지하였다. Ru(3)/SPK와 Ru(3)/SPM 촉매의 TPR 피크는 각각 453K와 413K의 근방에서 비슷한 환원도를 보여주었다. 이러한 분석자료로부터 SPK와 SPM은 산화반응의 촉매 담체로서 구비조건(비 표면적, 열안정성, 평균기공크기 등)를 갖추고 있음을 알 수 있었다.
The catalyst carriers of the mesoporous layer compounds were prepared to carry out the partial oxidation of methane(POM) to hydrogen. The catalytic activities of POM to hydrogen were investigated over Ru(3)/SPK and Ru(3)/SPM catalyst in a fixed bed flow reactor under atmosphere. In addition, the catalysts and carriers were characterized by BET, TEM, TPR. The BET surface areas of the silica-pillared H+-kenyaite(SPK) and the silica-pillared H+- magadite(SPM) were 760 m2/g and 810 m2/g, repectively, and the average pore sizes were 3.0 nm and 2.6 nm, repectively.The nitrogen adsorption isotherms were type IV with developed hysteresis. The TEM showed that the mesoporous layer compounds were formed well. The Ru(3)/SPK and the Ru(3)/SPM catalyst were obtained high hydrogen yields(90%, 87%), and were kept constant high hydrogen yields even about 60 hours at 973 K, CH4/O2=2, 1.25×10-5 g- Cat.hr/ml. The TPR peaks of Ru(3)/SPK and the Ru(3)/SPM catalyst showed the similar reducibilities around 453 K and 413 K. It could be suggested that SPK and SPM had the physicochemical properties as oxidation catalyst carries from these analysis data.
[References]
  1. Shen JP, Song CS, Catal. Today, 77(1-2), 89, 2002
  2. Choudhary VR, Banerjee S, Rajput AM, Appl. Catal. A: Gen., 234(1-2), 259, 2002
  3. Boccuzzi F, Chiorino A, Manzoli M, Andreeva D, Tabakova T, Ilieva L, Iadakiev V, Catal. Today, 75(1-4), 169, 2002
  4. Lunsford JH, Catal. Today, 63(2-4), 165, 2000
  5. Sadi F, Duprez D, Gerard F, Miloudi A, J. Catal., 213(2), 226, 2003
  6. Maiya PS, Anderson TJ, Mieville RL, Dusek JT, Picciolo JJ, Balachandran U, Appl. Catal. A: Gen., 196(1), 65, 2000
  7. Arai H, Machida M, Catal. Today, 10, 81, 1991
  8. Zarur AJ, Ying JY, Nature, 403, 66, 2000
  9. Cimino S, Lisi L, Pirone R, Russo G, Turco M, Catal. Today, 59(1-2), 19, 2000
  10. Kwon OY, Shin HS, Choi SW, Chem. Mater., 12, 1273, 2000
  11. Kwon OY, Choi SW, Bull. Korean Chem. Soc., 20, 69, 1999
  12. Webb PA, Orr C, Analytical Methods in Fine Particle Technology, 1st ed., Micromeritics, Norcross, GA, 1997
  13. Kwon OY, Park KW, J. Ind. Eng. Chem., 7(1), 44, 2001