Issue
Korean Chemical Engineering Research,
Vol.46, No.2, 301-309, 2008
레졸수지 합성에서 부가반응 특성 및 반응속도론
Characteristics and Kinetics of the Addition Reaction of Resol Resin Formation
본 연구에서는 레졸수지 합성에서 부가반응 실험변수인 F/P 몰비, 촉매 wt% 및 반응온도가 페놀치환체에 미치는 영향을 2단 실험계획법을 사용하여 실험하고 실험 결과를 삼원변량분석법(ANOVA, SPSS)을 사용하여 해석하였다. 페놀치환체는 반응시간 300분에서 F/P 몰비가 높을수록, 반응온도가 낮을수록, 촉매량이 적을수록 증가하는 경향을 보였고 ortho 지향성이 있음을 확인하였다. 레졸형 페놀수지의 합성에서 페놀계 치환체의 해리반응과 메틸렌글리콜 형태의 포름알데하이드의 분율을 고려하는 Zavitsas류의 속도론 모델을 단순화시킨 기초반응 모델을 제시하고 Zavitsas류의 속도론 모델과 비교하였다. 기초반응 모델은 평균적으로 2.79%의 오차를 보였으며 Zavitsas류 모델의 오차인 3.27%와 비슷한 값을 보이는 것을 확인하였다. 따라서 본 논문에서 제시한 기초반응 모델은 레졸합성의 부가반응 속도론 연구에 적용 가능하다고 판단된다.
In this study, the effect of formaldehyde to phenol (F/P) molar ratios, catalyst wt%, and reaction temperature on the chemical structure was studied utilizing a two-level full factorial experimental design. The effect of three variables on the chemical structure was analyzed by using three-way ANOVA of SPSS. Concentration of methyrol-substituted phenols after 300 min addition reaction increased with higher the F/P mole ratio, lower the reaction temperature and lower the catalyst wt%. Resol catalysed by barium hydroxide showed higher addition of formaldehyde onto ortho positions of phenolic rings. A simplified elementary reaction model for resole type phenolic resin formation which do not consider the dissociation of phenolic compounds and the fraction of formaldehyde in the form of methylene glycol was proposed and compared with Zavitsas’ type models. Elementary reaction model showed error of 2.79% compared to the error of 3.27% in Zavitsas’ type models. It was thought that the elementary reaction model could be used to predict the behavior of addition reaction in resol formation.
[References]
  1. Gardziella A, Pilato LA, Knob A, Springer-Verlag, Berlin, 2000
  2. Knop A, Pilato LA, Springer-Verlag, Berlin, 1985
  3. Aierbe GA, Echeverria JM, Martin MD, Etxeberria AM, Mondragon I, Polymer, 41(18), 6797, 2000
  4. Aierbe GA, Echeverria JM, Riccardi CC, Mondragon I, Polymer, 43(8), 2239, 2002
  5. Astarloa-Aierbe G, Echeverria JM, Vazquez A, Mondragon I, Polymer, 41(9), 3311, 2000
  6. Grenierloustalot MF, Larroque S, Grenier P, Bedel D, Polymer, 37(6), 939, 1996
  7. Astarloa-Aierbe G, Echeverria JM, Martin MD, Mondragon I, Polymer, 39(15), 3467, 1998
  8. Zavitsas AA, Beaulieu RD, J. Polym. Sci. A: Polym. Chem., 6, 2533, 1967
  9. Zavitsas AA, J. Chem. Eng. Data, 12(1), 94, 1967
  10. Atthajariyakul S, Vanichseni S, Thammasat Int. J. Sc. Tech., 6(3), 13, 2001
  11. Higuchi M, Nohno S, Tohmura S, J. Wood Sci., 44, 198, 1998
  12. Higuchi M, Nohno S, Tohmura S, J. Wood Sci., 45, 306, 1999
  13. Poljangek I, Likozar B, Krajnc M, J. Appl. Polym. Sci., 106(2), 878, 2007