Issue
Korean Chemical Engineering Research,
Vol.46, No.2, 279-285, 2008
메조 세공의 고체산 촉매를 이용한 2-나프톨의 에테르화 반응
The Etherification of 2-Naphthol over Mesoporous Solid Acid Catalysts
여러 가지 고체산 촉매를 이용하여 2-naphthol과 에탄올의 에테르화 반응을 연구하였다. 본 연구에서 촉매는 CNS, CNSWS, SCMS, MCF, SBA-15와 이 촉매에 sulfonic acid를 붙인 CNS-SO3H, CNSWS-SO3H, SCMS-SO3H, MCFSO3H, SBA-15-SO3H를 사용하였다. 반응온도 180 ℃, LHSV=1 h-1, 에탄올/2-naphthol의 몰 비 20인 조건으로 고정층 반응기에서 반응하여 각 촉매에서 2-naphthol의 전환율과 2-naphthyl ethyl ether의 선택도를 측정하였다. 2-naphthol의 전환율과 2-naphthyl ethyl ether의 선택도는 carbon 계열의 고체산 촉매에서 보다 silica 계열의 고체산 촉매에서 더 높게 나타났다. silica 계열의 고체산 촉매에서 2-naphthol의 전환율은 70~90%, 2-naphthyl ethyl ether의 선택도는 90%이상으로 나타났다. 촉매의 특성을 관찰하기 위해 XRD, SEM, TEM, NH3-TPD를 수행하였다.
The etherification of 2-naphthol with ethanol has been carried out over various solid acid catalysts. CNS, CNSWS, SCMS, MCF, and SBA-15 with and without sulfonic acid were used in this study as solid acid catalysts. The conversion of 2-naphthol and the selectivity of 2-naphthyl ethyl ether were obtained at reaction temperature = 180 ℃, LHSV = 1 h-1, ethanol/2-naphthol molar ratio = 20 using a fixed-bed down flow reactor. The conversion of 2-naphthol and the selectivity of 2-naphthyl ethyl ether over silica group catalysts were higher than them over carbon group catalysts. The conversion of 2-naphthol was 70-90% and the selectivity of 2-naphthyl ethyl ether was more than 90% over silica group solid acid catalysts. It was performed XRD, SEM, TEM, and NH3-TPD to characterize solid acid catalysts.
[References]
  1. Yadav GD, Krishnan MS, Ind. Eng. Chem. Res., 37(8), 3358, 1998
  2. Selvaraj M, Pandurangan A, Seshadri KS, Sinha PK, Krishnasamy V, Lal KB, J. Mol. Catal. A-Chem., 192(1-2), 153, 2003
  3. Chen LW, Chou CY, Ko AN, Appl. Catal. A: Gen., 178(1), L1, 1999
  4. Kim JW, Kim DJ, Han JU, Kang M, Kim JM, Yie JE, Catal. Today, 87(1-4), 195, 2003
  5. Kirumakki SR, Nagaraju N, Chary KVR, Narayanan S, J. Catal., 221(2), 549, 2004
  6. Porchet S, Kiwiminsker L, Doepper R, Renken A, Chem. Eng. Sci., 51(11), 2933, 1996
  7. Yoon SB, Sohn K, Kim JY, Shin CH, Yu JS, Hyeon T, Adv. Mater., 14(1), 19, 2002
  8. Zhao DY, Feng JL, Huo QS, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD, Science, 279(5350), 548, 1998
  9. Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD, J. Am. Chem. Soc., 120(24), 6024, 1998
  10. Lettow JS, Han YJ, Schmidt-Winkel P, Yang PD, Zhao DY, Stucky GD, Ying JY, Langmuir, 16(22), 8291, 2000
  11. Szymaska K, Bryjak J, Mrowiec-Bialon J, Jarze˛bski AB, Microporous Mesoporous Mater., 99(1-2), 167, 2007
  12. Kim H, Jung JC, Kim P, Yeom SH, Lee KY, Song IK, J. Mol. Catal. A-Chem., 259(1-2), 150, 2006
  13. Takagaki A, Toda M, Okamura M, Kondo JN, Hayashi S, Domen K, Hara M, Catal. Today, 116(2), 157, 2006
  14. Yang LM, Wang YJ, Luo GS, Dai YY, Microporous Mesoporous Mater., 84(1-3), 275, 2005
  15. Zheng Y, Li J, Zhao N, Wei W, Sun Y, Microporous Mesoporous Mater., 92(1-3), 195, 2006
  16. Karimi B, Khalkhali M, J. Mol. Catal. A-Chem., 271(1-2), 75, 2007
  17. Gupta R, Paul S, Gupta R, J. Mol. Catal. A-Chem., 266(1-2), 50, 2007
  18. Margolese D, Melero JA, Christiansen SC, Chmelka BF, Stucky GD, Chem. Mater., 12(8), 2448, 2000
  19. Reddy SS, Raju BD, Kumar VS, Padmasri AH, Narayanan S, Rao KSR, Catal. Commun., 8(3), 261, 2007
  20. Kumar VS, Nagaraja BM, Shashikala V, Seetharamulu P, Padmasri AH, Raju BD, Rao KSR, J. Mol. Catal. A-Chem., 223(1-2), 283, 2004