Issue
Korean Chemical Engineering Research,
Vol.45, No.6, 669-676, 2007
막오염에 미치는 유기물 분자량 분포특성 및 화학적 구조특성
Effect of Organic Melecular Weight and Functional Group on Membrane Fouling
낙동강 매리지역 원수에 대해 유기물 성상분석을 한 결과, 소수성 물질이 43%, 친수성 물질이 39%, 반친수성 물질이 18%를 차지하고 있는 것으로 나타났으며, 각각의 유기물질에 대한 분자량 크기 분포 특성을 살펴보면 소수성 > 반친수성 > 친수성 물질의 순으로 분자량 분포특성을 보였다. 막 공극 크기에 따른 영향을 살펴본 결과 막 공극 크기가 증가할수록 공극 내에서 공극 막힘현상과 공극 흡착현상이 막오염의 주된 메카니즘으로 작용하여 투과 flux 감소율이 크게 나타나는 것으로 조사되었다. 막의 재질에 따른 영향을 살펴본 결과 소수성 막의 경우 친수성 막에 비하여 소수성 상호반응(hydrophobic interaction)에 의하여 유기물에 의한 막 오염 현상이 발생하여 투과 flux 감소율이 더 크게 나타나고 초기 투과 flux 감소율도 빠르게 진행되었다. 원수에 대한 막의 재질과 막의 공극크기에 따른 막오염 메카니즘 분석결과 소수성 재질의 막에서 막표면 오염을 나타내는 Kc, 막의 공극흡착현상을 나타내는 Ks, 막의 공극 막힘현상을 나타내는 Ki 값이 상대적으로 크게 나타났다. 막의 공극 크기에 따른 막 오염 메카니즘 분석결과 막의 100 kDa 이상의 공극이 큰막의 경우에는 소수성 계열의 유기물이 막의 공극 내부에서 막 오염을 유발하였으며, 10 kDa 정도로 공극이 작은 막의 경우 소수성과 친수성 계열 유기물이 막 표면에서 막 오염을 유발하는 메카니즘이 주원인으로 작용하였다.
The raw water was fractionated into hydrophobic (HPO), transphilic (TPI), and hydrophilic portions (HPI) using XAD resins. The raw water DOC contains 39% of hydrophilics, 43% of hydrophobics, and 18% of transphilics. When fractionated NOM (natural organic matter) was passed through hydrophilic membrane with 100 kDa, hydrophobic portion (HPO) caused the most fouling and hydrophilic portion (HPI) caused the least fouling. This could be related to size and adsorption capability of organics. Small sized organics would pass through membrane pores, but large sized organics would be attracted to either membrane pores or surface, which led to the fouling. An effect of membrane pore size on membrane fouling is related to the availability of organics at membrane pores. As the pore size became larger, the more organics were transported into the membrane pore. Some organics caused pore blocking, and others caused pore adsorption, which resulted in membrane fouling. Membrane material is also important for membrane fouling. More fouling occurred at hydrophobic membrane than hydrophilic membrane regardless of its pore size. Hydrophobic interaction caused more fouling at hydrophobic membrane.
[References]
  1. Wiesner MR, Chellam S, Environ. Sci. Technol., 33(17), 360, 1999
  2. Schafer AI, Mauch R, Waite TD, Fane AG, Environ. Sci. Technol., 36(12), 2572, 2002
  3. Kaya Y, Itoh Y, Fujita K, Takizawa S, Desalination, 106(1), 71, 1996
  4. Turcaud VL, Wiesner M, Botero JY, J. Membr. Sci., 52(2), 173, 1990
  5. Yuan W, Zydney L, Environ. Sci. Technol., 34, 5043, 2000
  6. Braghetta A, DiGiano F, Ball WP, J. Environ. Eng., 123, 628, 1997
  7. Conte P, Piccolo A, Environ. Sci. Technol., 33(10), 1682, 1999
  8. Laine JM, Campos C, Baudin I, Janex ML, Understanding membrane fouling; A review of over a decade of resource. Proceedings IWA, ISSN 0941-0961, 2002
  9. Amy G, Cho J, J. Water Sci. & Tech., 40(9), 131, 1999
  10. Jung CW, Kang LS, Korean J. Chem. Eng., 20(5), 855, 2003
  11. Lin A, Wu RC, Eschenazi E, Papadopoulos K, Physicochem Eng., 174, 245, 2000
  12. Carroll T, King S, Booker NA, Water Res., 34(11), 2861, 2000
  13. Fan L, Harris JL, Roddick FA, Brooker NC, Water Res., 35(18), 4455, 2001
  14. Hermia J, Trans. Inst. Chem. Eng., 60, 183, 1982
  15. Li CW, Chen YS, Desalination, 170(1), 59, 2004
  16. Aoustin E, Schafer AI, Fane AG, Waite TD, Sep. Purif. Technol., 22(23), 63, 2001
  17. Jung CW, Han SW, Kang LS, J. Korean society of environmental engineers, 24(8), 1339, 2002
  18. Jonsson AS, Jonsson B, J. Membr. Sci., 56(1), 49, 1991
  19. Reckhow DA, Bose P, Bezbarua B, Hesse EM, Mcknight AP, EPA Report, U.S. Environmental Protection Agency, Drinking Water Research Division, Cincinnati, Ohio, 1992
  20. Tipping E, Ohnstad M, Chem. Geol., 44(4), 349, 1984
  21. Son HJ, Hwang YD, Roh JS, Ji KW, Sin PS, Jung CW, Kang LS, Water Sci. & Technol.: Water Supply, 5(5), 15, 2005