Issue
Korean Chemical Engineering Research,
Vol.45, No.6, 619-626, 2007
기체 분리막의 투과 특성 예측 모델식 개발
Predictive Thermodynamic Model for Gas Permeability of Gas Separation Membrane
막을 이용한 분리 공정은 상(phase) 변화가 없고 낮은 에너지 소비, 장치의 간소화, 큰 선택성, 가공의 용이성, 낮은투자 및 운용비용 등 여러 가지 장점으로 인하여 다른 방법들에 비해 분리가 간단하다는 장점 때문에 여러 분야에서 광범위하게 응용되고 있다. 여러 가지 기체 분리 방법 중 막을 이용한 기체 분리는 막 층 내에서의 기체 분자의 투과성의 차이를 이용하여 기체 분리를 할 수 있다. 이러한 기체 투과 특성을 예측하기 위해서 본 연구에서는 PDMS, γ-radiated PDMS, PTFE, PTFE-X 기체 분리막을 선택하였다. 네 가지 분리막의 기체 투과 실험의 결과를 이용하여 열역학적으로 고찰, 분석 후 실험데이터의 reduction 및 regression을 통하여 온도, 압력등의 외부 조건과 기체 분자의 열역학적 특성값에 따른 기체 투과특성 예측식을 개발하였다. 이렇게 개발된 예측식으로 구한 값과 실험데이터를 비교하여 객관적 신뢰성을 확인하였다. 이로 인하여 분리막이 분리 조건과 각각의 기체의 열역학적 특성값(σ, ε/k)으로 기체 투과특성을 알 수 있으므로 예측식을 여러 분야에서 활용할 수 있다 하겠다.
It is of special interest in our membrane separation technology due to its low energy consumption and cost, relatively simple equipment, low investment and operation cost, et al. Full scale utilization of such processes can be widely utilized to the various fields. Using the difference of permeability of gas molecules between the filter layers, it is able to separate effectually pure gases from the mixed gases. In this paper, the membranes of PDMS, γ-radiated PDMS, PTFE, PTFE-X are chosen to develop the predictive model for the separation of pure gases such as oxygen, nitrogen, hydrogen, and other gases from mixed gases. By utilizing the thermodynamic gas properties(σ, ε/k) and experimental data of gas transport characteristics for different polymer membranes, it is able to develop the predictive model equation under the influence of temperature, pressure and polymer characteristics. Predictive model developed in this research showed good agreement with experimental data of gas permeability characteristics for develop four different polymer membranes. The proposed model can also be extended to the general equation for predicting the separation of gases based on the properties of polymeric membranes.
[References]
  1. Mulder M, Kluwer Academic Publishers, 1991
  2. Stern SA, J. Membr. Sci., 94, 1, 1994
  3. Soltanieh M, Gill WN, Chem. Eng. Commun., 12(4-6), 279, 1981
  4. Stannett V, J. Membr. Sci., 3(2), 97, 1978
  5. Kesting RE, Fritzsche AK, John Wiley & Sons, Inc., 1993
  6. Ghosal K, Freeman BD, Polym. Adv. Technol., 5(11), 673, 1994
  7. Reid RC, Prausnitz JM, Poling BE, McGraw-Hill Book Co., 1988
  8. Prausnitz JM, Lichtenthaler RN, de Azevedo EG, Prentice Hall, 1999
  9. Koros WJ, Chern RT, Handbook of Separation Process Technology, edit. R. W. Rousseau, 1987
  10. Hagg MB, J. Membr. Sci., 170(2), 173, 2000
  11. Hagg MB, J. Membr. Sci., 177(1-2), 109, 2000
  12. Hagg MB, Sep. Purif. Technol., 21(3), 261, 2001
  13. Patil GS, Bora M, Dutta NN, J. Membr. Sci., 101(1-2), 145, 1995
  14. Cho YK, Han KW, Lee KH, J. Membr. Sci., 104(3), 219, 1995
  15. Lin WH, Chung TS, J. Membr. Sci., 186(2), 183, 2001
  16. Yampolskii Y, Shishatskii S, Alentiev A, Loza K, J. Membr. Sci., 148(1), 59, 1998
  17. Hwang YD, Shin HY, Kwak H, Bae SY, Korean Chem. Eng. Res., 44(6), 588, 2006