Issue
Korean Chemical Engineering Research,
Vol.45, No.6, 611-618, 2007
표면 솔-젤 반응을 활용한 마이크로미터 크기의 비구형상 공동 입자의 제조
Fabrication of Hollow Micro-particles with Nonspherical Shapes by Surface Sol-gel Reaction
아민기로 코팅된 단분산 폴리스티렌 입자를 제조한 뒤 톨루엔-물로 구성된 유중수 액적(oil-in-water emulsion) 내부에서 입자를 자기 조립(self-assembly)시켜 다양한 다면체(polyhedra) 구조의 콜로이드 클러스터(colloidal cluster)를 제조하였다. 콜로이드 클러스터의 표면에서 솔-젤(sol-gel) 반응을 유발한 뒤 표면이 실리카로 코팅된 복합(composite) 콜로이드 클러스터를 제조할 수 있었고 이를 주형(template)으로 활용하여 고온 소성에 의해 내부의 폴리스티렌 입자를 제거하고 마이크로미터 크기의 다양한 구조의 비구형상 공동 입자(hollow particle)를 제조하였다. 밀도구배원심분리법 (density gradient centrifugation)에 의해 폴리스티렌 구성 입자의 수와 구조가 균일한 콜로이드 클러스터를 제조할 수 있었으며 표면 솔-젤 반응에 의해 비구형상 구조의 공동 입자를 제조하였다.
We demonstrate the sol-gel coating technique of colloidal clusters for producing hollow micro-particles with complex morphologies. Cross-linked amidine polystyrene (PS) microspheres were synthesized by emulsifier-free emulsion copolymerization of styrene and divinylbenzene. The amidine PS particles were self-organized inside toluene-inwater emulsion droplets to produce large quantities of colloidally stable clusters. These clusters were coated with thin silica shell by sol-gel reaction of tetraethylorthosilicate (TEOS) and ammonia, and the organic polystyrene cores were removed by calcination at high temperature to generate nonspherical hollow micro-particles with complex morphologies. This process can be used to prepare hollow particles with shapes such as doublets, tetrahedra, icosahedra, and others.
[References]
  1. Giersig M, Ung T, LizMarzan LM, Mulvaney P, Adv. Mater., 9(7), 570, 1997
  2. Lizmarzan LM, Giersig M, Mulvaney P, Langmuir, 12(18), 4329, 1996
  3. Philipse AP, Vanbruggen MP, Pathmamanoharan C, Langmuir, 10(1), 92, 1994
  4. Hanprasopwattana A, Srinivasan S, Sault AG, Datye AK, Langmuir, 12(13), 3173, 1996
  5. Graf C, Vossen DLJ, Imhof A, van Blaaderen A, Langmuir, 19(17), 6693, 2003
  6. Imhof A, Langmuir, 17(12), 3579, 2001
  7. Kato N, Caruso F, J. Phys. Chem. B, 109(42), 19604, 2005
  8. Kawahashi M, Matijevic E, J. Colloid Interface Sci., 138(2), 534, 1990
  9. Srinivasan S, Datye AK, Hampden-Smith M, Wachs IE, Deo G, Jehng JM, Turek AM, Peden CHF, J. Catal., 131(1), 260, 1991
  10. Dhas NA, Suslick KS, J. Am. Chem. Soc., 127(8), 2368, 2005
  11. Jiang P, Bertone JF, Colvin VL, Science, 291, 453, 2001
  12. Bamnolker H, Nitzan B, Gura S, Margel S, J. Mater. Sci. Lett., 16(16), 1412, 1997
  13. Hotta Y, Alberius PTA, Bergstorm L, J. Mater. Chem., 13(3), 496, 2003
  14. Jin P, Chen QW, Hao LQ, Tian RF, Zhang LX, Wang L, J. Phys. Chem. B, 108(20), 6311, 2004
  15. Cho YS, Yi GR, Lim JM, Kim SH, Manoharan VN, Pine DJ, Yang SM, J. Am. Chem. Soc., 127(45), 15968, 2005
  16. Manoharan VN, Elsesser MT, Pine, DJ, Science, 301(5632), 483, 2003
  17. Cho YS, Yi GR, Kim SH, Pine DJ, Yang SM, Chem. Mater., 17, 5006, 2005
  18. Goodwin JW, Ottewil RH, Pelton R, Colloid Polym. Sci., 257(1), 61, 1979
  19. Lala NL, Deivaraj TC, Lee JY, Colloids Surf. A: Physicochem. Eng. Asp., 269(1-3), 119, 2005
  20. Sloane NJA, Hardin RH, Duff TDS, Conway JH, Discrete Comput. Geom., 14, 237, 1995
  21. Wang P, Chen D, Tang FQ, Langmuir, 22(10), 4832, 2006